Từ kết quả thí nghiệm xây dựng các biểu đồ tương quan mô tả sự ảnh hưởng của nhiệt độ phản ứng, GHSV đến độ chuyển hoá, hiệu suất các phân đoạn. Từ đó xác định điều kiện phản ứng tốt nhất cho phản ứng trên
TÀI LIỆU THAM KHẢO
1. Adesina, A.A., The role of CO2 in hydrocarbon reforming catalysis: friend or foe? Current Opinion in Chemical Engineering, 2012. 1(3): pp. 272-280.
2. Hu, Y.H. and E. Ruckenstein, Catalytic conversion of methane to synthesis gas by partial
oxidation and CO2 reforming. Chemlnform, 2004. 35(49): pp. no-no.
3. Judit Adam a,*, Eleni Antonakou b, Angelos Lappas b, Michael Sto'cker c, Merete H. Nilsen c, Aud Bouzga c, Johan E. Hustad a, Gisle 0ye, ỉn situ catalytic upgrading of
biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials, Microporous and Mesoporous Materials 96 (2006): pp93—101
4. Xianhui Zhao, Lin Wei , Shouyun Cheng, Yuhe Cao, James Julson, Zhengrong Gu,
Catalytic cracking of carinata Oil for hydrocarbon biofuel over fresh and regenerated Zn/Na-ZSM-5, Applied Catalysis A: General 507 (2015) pp. 44-55
5. Wei-Chieh Chung, Kuan-Lun Pan, How-Ming Lee, and Moo Been Chang, Dry
Reforming of Methane with DBD and Ferroelectrics Packed-bed Reactors, Energy &
Fuels, 2014
6. Yimeng Wang, Jie Wang, Midtifaceted effects of HZSM-5 (Proton-exchanged Zeolite
Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor In a two-stage fixed bed reactor, Bioresource Technology 214 (2016) pp. 700-710
7. Sana Kordoghli, Besma Khiari, Maria Paraschiv, Fethi Zagrouba,
Mohand Tazerout, Production of hydrogen and hydrogen-rich syngas
during thermal catalytic supported cracking of waste tyres in a bench-scale fixed bed reactor, international journal of hydrogenergy
(2018) pp.l -14
8. A. Tirado, J. Ancheyta, Modeling of a bench-scale fixed-bed reactor for catalytic
hydrotreating of vegetable oil, Renewable Energy, 2019
9. Zhongfeng Geng, Hao Deng, Yonghui Li, Minhua Zhang, Numerical investigation of
complex chemistry performing in Ptcatalyzed oxidative dehydrogenation of ethane fixed-bed reactors, Chinese Journal of Chemical Engineering.
10. Nguyễn Bin, Các quá trình, thiết bị trong cơng nghệ hóa chất, thực phẩm, NXB Khoa học Kỹ thuật, 2004
11. Trần Xoa, Nguyễn Trọng Khng, Hồ Lê Viên, sổ tay q trình và thiết bị cơng nghệ
hóa chất, tập 1, 2. NXB Khoa học kỹ thuật, 2013.
12. Lý Ngọc Minh, Quá trĩnh và thiết bị truyền nhiệt, NXB Khoa học kỹ thuật, 2007. 13. Levenspiel, o., Chemical reaction engineering. Industrial & engineering chemistry
research, 1999. 38(11): pp. 4140-4143.
14. Manokaran, V., p. Saiprasad, and s. Srinath, Studies on Heat and Mass Transfer
Limitations in Oxidative Dehydrogenation of Ethane Over Cr2O3/Al2O3 Catalyst.
Procedia Engineering, 2015. 127: pp. 1338-1345.
15. Mears, D.E., Tests for transport limitations in experimental catalytic reactors. Industrial & Engineering Chemistry Process Design and Development, 1971. 10(4): p. 541-547. 16. Weisz, p. and c. Prater, Interpretation of measurements In experimental catalysis. Adv.
Catal, 1954. 6(143): pp. 60390-9.
17. Mears, D.E., Diagnostic criteria for heat transport limitations in fixed bed reactors. Journal of Catalysis, 1971. 20(2): pp. 127-131.
18. Anderson, J., A criterion for Isothermal behaviour of a catalyst pellet. 1963, PERGAMON-ELSEVIER SCIENCE LTD THE BOULEVARD, LANGFORD LANE, KIDLINGTON .... pp. 147-148.
19. Theron, J., et al., Internal and external transport effects during the oxidative reforming
of methane on a commercial steam reforming catalyst, in Studies in Surface Science and Catalysis. 1997, Elsevier, pp. 455-460.
20. LaMont, D.c. and W.J. Thomson, Dry reforming kinetics over a bulk molybdenum
carbide catalyst. Chemical engineering science, 2005. 60(13): pp. 3553-3559.
21. McCabe, W.L., J.c. Smith, and p. Harriott, Unit operations of chemical engineering. Vol. 5. 1993: McGraw-hill New York.
22. Takagaki, N., et al., Effect of Schmidt number on mass transfer across a sheared gas
liquid interface in a wind-driven turbulence. Scientific reports, 2016. 6: pp. 37059.
23. Wilke, c., A viscosity equation for gas mixtures. The journal of chemical physics, 1950.
18(4): pp. 517-519.
24. Green, D.w. and R.H. Perry, Perry's Chemical Engineers' Handbook, Eighth Edition. 2007: McGraw-Hill Education.
25. Fuller, E. and J. Giddings, A comparison of methods for predicting gaseous diffusion
coefficients. Journal of Chromatographic Science, 1965. 3(7): pp. 222-227.
26. Dwivedi, P.N. and s. Upadhyay, Particle-fluid mass transfer in fixed and fluidized beds. Industrial & Engineering Chemistry Process Design and Development, 1977. 16(2): pp. 157-165.
27. Felder, R.M., R.w Rousseau, and L.G. Bullard, Elementary principles of chemical
processes. 1986: Wiley NY etc.
variable thermophysical fluid properties. Journal of Heat Transfer, 2017. 139(7).
29. Yang, Y. and s. Kou, Temperature oscillation in a tin liquid bridge and critical Marangoni
number dependency on Prandtl number. Journal of crystal growth, 2001. 222(1-2): pp.
135-143.
30. Setiawan, I., M. Nohtomi, and M. Katsuta. Critical Temperature Differences of a
Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases, in Journal of Physics: Conference Series. 2015. IOP Publishing.
31. Butt, J.B., Thermal conductivity of porous catalysts. AIChE Journal, 1965. 11(1): pp. 106-112
32. A.L.M. Da Silva, J.p. Den Breejen, L.v. Mattos, J.H. Bitter, K. p. de Jong, F. B. Noronha,
“Cobalt particle size effects on catalytic performance for ethanol steam reforming- Smaller is better f Journal of catalysis, vol. 318, pp. 67-74, 2014,
. https://doi.Org/10.1016/j.jcat.2014.07.020
33. w. Wu, z. Wan, w. Chen, M. Zhu, D. Zhang, Synthesis of mesoporous alumina with
tunable structural properties, Microporous and Mesoporous Materials, vol. 217, no. 15,
pp. 12-20, 2015, https://doi.Org/10.1016/j.micromeso.2015.06.002.
34. K. Tao, Y. Zhang, s. Terao, Y. Yoneyama, T. Kawabata, K. Matsuda, s. Ikeno, N. Tsubaki, “Chemical and spatial promotional effects of blmodal pore catalysts for
methane dry reforming, ” Chemical Engineering Journal, vol. 170, no. 1, pp. 258-263,
2011, https://doi.Org/10.1016/j.cej.2011.03.038.
35. o. Omoregbe, H.T. Danh, c. Nguyen-Huy, H.D. Setiabudi, s.z. Abidin, Q.D. Truong, D.V.N. Vo, “Syngas production from methane dry reforming over NỈ/SBA-15 catalyst:
Effect of operating parameters f International Journal of Hydrogen Energy, vol. 42, pp.
11283-11294, 2017, https://doi.Org/l0.l0l6/i.ijhydene.20l7.03.146.
36. É. Horváth, K Baán, E Varga, A Oszko, Á Vágó, M Toro, A. Erdơhelyi, “Dry reforming
of CH4 on CO/AI2O3 catalysts reduced at different temperatures, ” Catalysis Today, vol.
281, pp. 233-240, 2017, https://doi.Org/10.1016/j.cattod.2016.04.007.
37. B.v. Ayodele, M.R. Khan, C.K. Cheng, “Syngas production from CO2 reforming of
methane over ceria supported cobalt catalyst: Effects of reactants partial pressure, ”
Journal of Natural Gas Science and Engineering, vol. 27, pp. 1016-1023, 2015,
38. [1] 0. R. Inderwildi, s. J. Jenkins, and D. A. King, “Mechanistic studies of hydrocarbon combustion and synthesis on noble metals,” Angewandte Chemle International Edition, vol. 47, no. 28, pp. 5253-5255, 2008, https://doi.org/10.1002/anie.200800685.
39. [2] L. Kapokova, s. Pavlova, R. Bunina, G. Alikina, T. Krieger, A. Ishchenko, V. Rogov, V. Sadykov, “Dry reforming of methane over LnFeo.7Nio.303-8 perovskites: Influence of Ln nature,” Catalysis Today, vol. 164, no. 1, pp. 227-233, 2011,
0.1016/j .cattod.2010.10.086. https://d0i.0rg/l
40. [3] M. Bradford, M.J.C.R. Vannice, “CO2 reforming of CH4,” Catalysis Reviews, vol. 41, no. 1, pp. 1-42, https://doi.org/10.1081/CR-100101948.
41. [4] M. Usman, W.M.A. Wan Daud, Hazzim F. Abbas, “Dry reforming of methane: influence of process parameters-a review,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 710-744, 2015, https://doi.Org/10.1016/j.rser.2015.02.026.
42. [5] B. Abdullah, N.A.A. Ghani, D.-V.N. Vo, “Recent advances in dry reforming of methane over Ni-based catalysts,” Journal of Cleaner Production, vol. 162, pp. 170-
185, 2017, https://doi.org/10.1016/jjclepro.2017.05.176.
43. [6] D.-V.N. Vo, T.H. Nguyen, E.M. Kennedy, B.z. Dlugogorski, A.A. Adesina, “Fischer-Tropsch synthesis: Effect of promoter type on alumina-supported Mo carbide catalysts,” Catalysis Today, vol. 175, no. 1, pp. 450-459, 2011,
0.1016/j .cattod.2011.04.045. https://doi.Org/l
44. M.A. Neem, A.s. Al-Fatesh, w.u. Khan, A. E. Abasaeed, A. H. Fakeeha, “Syngas production from dry reforming of methane over nano Ni polyol catalysts,” International
Journal of Chemical Engineering and Applications, vol. 4, no. 5, pp. 315-320, 2013.
45. Forte, A., et al., Carbon footprint and fossil energy consumption of bio-ethanol fuel
production from Arundo donax L. crops on marginal lands of Southern Italy. Energy,
2018.150: pp. 222-235.
46. Khan, S.A.R., et al., Green supply chain management, economic growth and
environment: A GMM based evidence. Journal of Cleaner Production, 2018. 185: pp.
588-599.
47. S.Y. Foo, C.K. Cheng, T.H. Nguyen, A.A. Adesina, “Evaluation of lanthanide-group promoters on C0-NÌ/AI2O3 catalysts for CH4 dry reforming,” Journal of Molecular
Catalysis A: Chemical, vol. 344, no. 1-2, pp. 28-36, 2011,
https://d0i.0rg/l 0.1016/j .molcata.2011.04.018.
48. S.Y. Foo, c. K. Cheng, T.H. Nguyen, A.A. Adesina, “Oxidative CO2 reforming of methane on alumina-supported Co- Ni catalyst,” Industrial and Engineering Chemistry
Research, vol. 49, no. 21, pp. 10450-10458, 2010, https://doi.org/10.1021/iel00460g. 49. [8] E. Ruckenstein, H. Y. Wang, “Carbon dioxide reforming of methane to synthesis gas
over supported cobalt catalysts,” Applied Catalysis A: General, vol. 204, no. 2, pp. 257- 263, 2000, https://doi.Org/10.l016/S0926-860X(00)00674-8.
50. [9] A.w. Budiman, s H. Song, T.s. Chang, C.H. Shin, M.J. Choi, “Dry reforming of methane over cobalt catalysts: a literature review of catalyst development,” Catalysis
Surveys from Asia, vol. 16, no. 4, pp. 183-197, 2012,
.
https://doi.org/10.1007/sl0563- 012-9143-2
51. [10] B.v. Ayodele, M.R. Khan, S.S. Lam, C.K. Cheng, “Catalytic performance of ceria- supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane,” International Journal of Hydrogen Energy, vol. 41, no. 1, pp. 198-207, 2016,
0.1016/j .ijhydene.2015.10.049. https://d0i.0rg/l
52. B.v. Ayodele, M.R. Khan, s.s. Lam, C.K. Cheng, “Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies,” International Journal of Hydrogen Energy, vol. 41, no. 8, pp. 4603-4615, 2016, https://d0i.0rg/l 0.1016/j.iịhvdcne.2016.01.091.
53. K. Omata, N. Nukui, T. Hottai, Y. Showa, M.Yamada, “Strontium carbonate supported cobalt catalyst for dry reforming of methane under pressure,” Catalysis supported cobalt catalyst for dry reforming of methane under pressure,” Catalysis
PHẦN III. PHỤ LỤC ĐÍNH KÈM (/ữ7 cu vùn hun dưới dây đã có sun. chủ nhiệm chi cằn
photo vù dính kèm nguy sun nhùng nội dung trên, bủn chính sư dụng khi thanh lý hợp dóng với phịng kế tốn. Khi thanh lý, háo cáo dược in thành 03 cuốn, trong dỏ, 01 cuồn dóng bìa mạ vàng, 02 cuồn dóng bỉu cứng thường)
1. Hợp đồng thực hiện đề tài nghiên cứu khoa học 2. Thuyết minh đề tài đã được phê duyệt
3. Quyết định nghiệm thu
4. Hồ sơ nghiệm thu (biên bản họp, phiếu đánh giá, bảng tổng hợp điểm, bản giải trình, phiêu phản biện)
5. Sản phẩm nghiên cứu (bài báo, bản vẽ, mơ hình...... )
CỘNG HỊA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc Độc lập - Tự do - Hạnh phúc
Tp. Hồ Chí Minh, ngàylẨỉhcing 2/ năm 20ỉ 7
HỢP ĐỒNG
NGHIÊN CỨU KHOA HỌC VÀ PHÁT TRIẺN CÔNG