Chương 2 Mơ hình hồi quy hai biến
2.6. Kiểm định giả thuyết về mơ hình
2.6.5. Mơ hình hồi quy với việc thay đổi đơn vị đo của biến
Vấn đề đặt ra là: khi thay đổi đơn vị đo của các biến, ta có cần thiết lập lại từ đầu mơ
hình hồi quy hay không?
Giả sử mơ hình hồi quy SRF của Y theo X là: 𝑌 = 𝑎̂ + 𝑏̂. 𝑋 + 𝑈̂ (2.35)
Đặt Y’ = k.Y, X’ = h. X, khi đó mơ hình hồi quy SRF của Y’ theo X’ là:
𝑌′ = 𝑎̂ + 𝑏′ ̂ . 𝑋′ + 𝑈′′ ̂. (2.36) trong đó 𝑎̂, 𝑏̂, 𝑎̂ , 𝑏′ ̂′ tìm được theo phương pháp OLS. Từ các công thức của 𝑎̂, 𝑏̂, 𝑎̂ , 𝑏′ ̂′ ta
có: 𝑎̂ = 𝑘. 𝑎̂; 𝑏′ ̂ = ′ 𝑘
ℎ. 𝑏̂ (2.37) Vì vậy mơ hình hồi quy SRF của Y’ theo X’ là:
𝑌′ = 𝑘. 𝑎̂ + 𝑘ℎ. 𝑏̂. 𝑋′ + 𝑈′̂ (2.38)
Điều này có nghĩa là sau khi dùng phép đổi biến Y’ = k.Y, X’ = h. X nói chung và đổi đơn vị đo cho các biến nói riêng, ta khơng cần thiết lập lại từ đầu mơ hình hồi quy: Từ mơ hình (2.35) của Y theo X, ta suy ra mơ hình hồi quy SRF của Y’ theo X’ là (2.38). Ngồi ra ta có hệ thức:
𝜎̂′2 = 𝑘. 𝜎̂2; 𝑅𝑋2′𝑌′ = 𝑅𝑋𝑌 2 ; 𝑣𝑎𝑟(𝑎̂ ) = 𝑘′ 2. 𝑣𝑎𝑟(𝑎̂); 𝑣𝑎𝑟(𝑏′̂) = 𝑘2
Bộ mơn Tốn – Thống kê Bài giảng Kinh tếlượng
Việc thay đổi đơn vị đo của các biến không ảnh hưởng đến những tính chất của các ước
lượng nhận được theo phương pháp OLS.
Ví dụ 8: Với một mẫu điều tra về mức thu nhập X (USD) và mức tiêu dùng Y (USD) gồm
10 hộgia đình từ tổng thể 60 hộ trong ví dụtrước đây ởchương 1, ta có các số liệu sau:
X 80 100 120 140 160 180 200 220 240 260
Y 60 78 90 108 114 132 138 144 150 174
Hãy thiết lập SRF tuyến tính mơ tả sự phụ thuộc của Tiêu dùng tính theo EUR và thu nhập tính theo ngàn VNĐ, biết 1 USD = 20 ngàn VNĐ, 1 EUR = 1,2 USD.
Giải: Từ số liệu ta tính được: 𝑏̂ = 0,578182; 𝑎̂ = 20,50909 SRF tuyến tính của Y theo X là:
𝑌̂ = 20,50909 + 0,578182. 𝑋 (*)
Gọi X’ là mức thu nhập hàng tuần của một hộtính theo ngàn VNĐ, Y’ là mức tiêu dùng hàng tuần của một hộ tính theo EUR.
- Nếu chuyển số liệu trên sang cho X’, Y’ ta có bảng số liệu:
X’ 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200
Y’ 50 65 75 90 95 110 115 120 125 145
Tính trực tiếp ta có: 𝑏′̂ = 0,024091; 𝑎′̂ = 17,09091
SRF tuyến tính của Y’ theo X’ là: 𝑌′̂ = 17,09091 + 0,024091. 𝑋′ (**) - Nếu dùng công thức đổi đơn vị đo (2.37), từ giả thiết:
𝑌′ =1,2 . 𝑌; 𝑋1 ′= 20. 𝑋, 𝑡ứ𝑐 𝑙à 𝑘 = 1,2 , ℎ = 201 ta có: 𝑎̂ = 𝑘. 𝑎̂ = 17,09091; 𝑏′̂ =′ 𝑘ℎ𝑏̂ = 0,024091 Tức là ta nhận lại đúng như kết quả tính trực tiếp (**)
Nhận xét: Để nhận được kết quả (2.38), ta chỉ cần thay trong (2.37): 𝑌 =1𝑘𝑌′; 𝑋 =ℎ1𝑋′.