Chứng cứ ứng dụng mô hình Neural Network

Một phần của tài liệu Ứng dụng Neural Network trong việc dự báo thị trường chứng khoán VN (Trang 52 - 65)

Trong nhiều năm qua, việc sử dụng mô hình Neural Network ngày càng rộng rãi và phổ biến trong lĩnh vực kinh tế - tài chính. Nhiều tổ chức, cũng như cá nhân cũng đã công bố rộng rãi các kết quả nghiên cứu của mình, trong đó nổi bật nhất là nghiên cứu dự báo tỷ lệ lạm phát của Chính Phủ Nhật và Hồng Kông (được trình bày trong phần phụ lục) và dự báo chỉ số S&P 500 của Jason E.Kutsurelis. Vào năm 1998, Jason E.Kutsurelis đã đưa ra kết quả nghiên cứu của mình trong việc ứng dụng mô hình Neural Network để dự báo S&P 500. Ông sử dụng các biến đầu vào được thu thập từ 1/3/1991 đến 18/8/1998 để dự báo cho chỉ số S&P 500 cho 10 ngày sau, bao gồm:

- Chỉ số S&P 500

- Chỉ số ngành vận tải Dow Jones - Chỉ số ngành công nghiệp Dow Jones - Chỉ số ngành dịch vụ công cộng Dow Jones - Thông tin nghiên cứu về hàng hóa

- Chỉ số về dầu AMEX - Chỉ số về vàng và bạc

Mô hình Neural Network được huấn luyện bằng việc sử dụng backpropagation chuẩn cho cả hai trường hợp kiểm nghiệm. Hình 3.7 cho thấy sự thay đổi của chỉ số S&P 500 và đuợc mô phỏng dưới đây nhằm để tham khảo sắp tới. Có thể thấy rằng thị trường đã rơi xuống nhanh chóng 730 điểm (10/10/1986) và đầu cơ giá lên 1110 điểm (21/1/1994). Thật sự bị hấp dẫn khi nhìn thấy mô hình hoạt động như thế nào trong những trường hợp xấu nhất, từ đó nó có thể được hoạt động cực kỳ tốt khi việc huấn luyện và thử nghiệm dữ liệu được xếp hạng như nhau.

Để thử nghiệm mô hình trong từng vùng then chốt này, mô hình được huấn luyện để sử dụng dữ liệu trong khoảng thời gian 4 năm trước sự sụp đổ năm 1986 hoặc là trước sự khởi đầu của cuộc đầu cơ giá lên năm 1994. Trong cả hai trường hợp thử nghiệm này thì mô hình được sử dụng có một lớp ẩn với 7 neuron ẩn và 19 neuron đầu vào. Các giá trị của tham số ban đầu được cho vào một chương trình máy tính để định giá trị một cách ngẫu nhiên [-1,1]. Các lớp ẩn và đầu ra sử dụng chức năng kích hoạt sigmoid. Trong khi số lượng khoảng trống cho các lớp ẩn được cung cấp bằng phần tử đơn vị đầu ra cố định của neuron đầu ra thứ 19, không có số lượng khoảng trống nào cho các sigmoid trong lớp đầu ra. Những trường hợp thử nghiệm này và các kết quả thu được được phân tích dưới đây.

3.5.2. Trường hợp 1: Đầu cơ giá lên từtháng 1 năm 1994

Theo hình 3.8 cho thấy việc huấn luyện và thử nghiệm dữ liệu được bình thường hóa cho chỉ số S&P 500, trong khi hình 3.9 cho thấy việc huấn luyện và thử

nghiệm dữ liệu được bình thường hóa cho lãi suất. Dữ liệu bắt đầu từ dữ liệu điểm 850 và việc huấn luyện dữ liệu với chiều dài là 275 tuần trong khi việc thử nghiệm

dữ liệu có chiều dài là 50 tuần. Có thể thấy rằng lãi suất trong dài hạn đang gia tăng trong hầu hết các phần của việc đầu cơ giá lên (thử nghiệm dữ liệu) chấp nhận vào lúc cuối, trong khi trong ngắn hạn lãi suất bị trì hoãn bởi 20 tuần đang tăng lên vào lúc ban đầu và sau đó cố định. Sự thay đổi này từ việc gia tăng cho đến khi cố định được trông đợi là sẽ có tác động đến thị trường. Tuy nhiên, trong lĩnh vực này tác động chính được trông đợi lại đến từ động lực của chính thị trường, được phân tích bởi các nhà kinh tế học ở những nơi khác.

Kết quả kiểm nghiệm

Hình 3.10 cho thấy kết quả kiểm nghiệm của trường hợp này. Việc thử nghiệm đã đuợc hoàn thành bằng việc huấn luyện mạng lưới và đầu ra cho mỗi tuần được so sánh với đầu ra kỳ vọng. Có thể nhìn thấy từ các số liệu là mô hình có thể dự đoán chắc chắn việc đầu cơ giá lên trước 1 tuần. Nó dự báo chính xác xu hướng các chỉ số của cổ phiếu đến mức 43 lần vượt ra ngoài phạm vi mẫu là 50 điểm. Phần trăm sai số lớn nhất đạt được như là phần trăm của đầu ra mong muốn chỉ là 4.044%, trong khi sai số trung bình chỉ là 0.95%. Vì vậy, các mô hình đã hoạt động rất tốt và sự thể hiện này có thể được sử dụng một cách phù hợp để lực chọn thời điểm cho thị trường.

Hình 3.8. Việc huấn luyện và thử nghiệm dữ liệu (chỉ số S&P 500) trong

Hình 3.9. Việc huấn luyện và thử nghiệm dữ liệu cho lãi suấttrong trường

Thậm chí sau khi detrending và bình thường hóa, những việc chỉ dựa trên việc huấn luyện dữ liệu, đầu ra mong muốn từ mô hình thì cao hơn những giá trị mà nó được huấn luyện trong hình 3.8. Thật vậy, mô hình có khả năng dự báo một sự gia tăng trong đầu ra ngay cả khi nó không được huấn luyện cho các giá trị chính xác của việc xếp loại các giá trị đầu ra. Những tiên đoán tốt này cho thấy một viễn cảnh tốt đẹp trong tương lai, nhằm chỉ ra rằng sự quan tâm được đưa ra nhằm bình thường hóa dữ liệu để một sự gia tăng đột ngột trong giá trị các chỉ số sẽ không bão hòa với giá trị được bình thường hóa.

Điều đó có thể được tiên đoán là mô hình có thể được huấn luyện mỗi tuần hơn là cứ giữ nó dựa trên việc huấn luyện, điều đó sẽ trở nên cũ vào gần cuối tuần thứ 50. Việc dịch chuyển cửa sổ huấn luyện mỗi tuần và huấn luyện lại mô hình là một cách tiếp cận hợp lý, điều này là cần thiết trong thực tế. Tuy nhiên, có một sai lầm lớn của việc huấn luyện mô hình đó là việc kế thừa những thay đổi theo tuần và theo đó các hoạt động của mô hình sẽ tồi tệ hơn. Trong bất kỳ trường hợp nào, thủ tục này có thể được sửa đổi cho thích hợp và cửa sổ dự báo có thể được giảm bớt để phù hợp với các yêu cầu.

Hình 3.10. Chỉ số S&P 500 được dự báo và kỳ vọngtrong trường hợp đầu cơ

giá lên

3.5.3. Trường hợp 2: Sự sụp đổvào tháng 10 năm 1986

Hình 3.11 cho thấy các giá trị của chỉ số trong phần huấn luyện và thử nghiệm cho trường hợp thứ hai, nơi mà việc huấn luyện dữ liệu bắt đầu từ dữ liệu điểm thứ 500 và dữ liệu điểm này dài 200 trong khi dữ liệu thử nghiệm vượt quá 75 tuần ngay lập tức theo sau việc huấn luyện dữ liệu và bao gồm một sự sụp đổ mạnh. Hình 3.12 cho thấy lãi suất cho việc huấn luyện và thử nghiệm được kết nối. Trong trường hợp này, lãi suất trì hoãn trong dài hạn đang rơi xuống trong chu kỳ huấn luyện khi chỉ số S&P 500 có xu hướng gia tăng, trong khi đó trong suốt chu kỳ thử nghiệm lãi suất đang gia tăng rất nhanh, khi chỉ số đang rơi xuống. Lãi suất trì hoãn trong ngắn hạn bởi 20 tuần cũng đang gia tăng lên nhưng với mức độ chậm hơn trong thời kỳ thử nghiệm. Vì vậy, trong trường hợp này, nó được trông đợi rằng tác động của việc gia tăng lãi suất sẽ dự báo được sự sụp đổ. Điều đó không là động lực chính trong việc huấn luyện dữ liệu cho chỉ số, từ khi chỉ số gia

tăng và rơi xuống hoặc theo một hướng khác là sự thay đổi trong chỉ số dao động giữa giá trị tốt nhất và xấu nhất. Mạng lưới có 7 neuron trong lớp ẩn được huấn luyện cho 900 quá trình lặp đi lặp lại, với kích cỡ 1 bước cố định là 0.4 và các kết quả thử nghiệm được giới thiệu chi tiết trong phần sau.

Hình 3.11. Việc huấn luyện và thử nghiệm dữ liệu (chỉ số S&P 500) trong

trường hợp giá xuống

Các kết quả kiểm nghiệm

Hình 3.13 cho thấy các kết quả kiểm nghiệm trong trường hợp này. Biểu đồ cho thấy rằng mô hình có khả năng dự báo sự sụp đổ mạnh trước 1 tuần nó thật sự xảy ra. Mặc dù vậy, đầu ra của mô hình thì thấp hơn các giá trị thực tế cho phần ban đầu trong việc phân loại thử nghiệm, không có xu hướng cho chỉ số cổ phiếu, mà có thể tác động lên mô hình để dự báo một vụ sụp đổ. Vì vậy, một mô hình chỉ sử dụng các giá trị chỉ số trong quá khứ có thể không có khả năng dự báo sự sụp đổ, mà nó được phân phối nhằm gia tăng lãi suất dài hạn. Trong trường hợp này, mô hình dự đoán chính xác xu hướng của chỉ số cổ phiếu 65 lần vượt ra ngoài mẫu thử

nghiệm là 75 điểm. Phần trăm sai số lớn nhất đạt được như là phần trăm của đầu ra kỳ vọng thì cao hơn nhiều so với với trường hợp 1 và đạt mức 13.7%, trong khi đó sai số trung bình chỉ là 4.18%. Nguồn chính của sai số ở đây là mạng lưới không thể dự báo tốt sự gia tăng ban đầu trong thị trường. Trong thực tế sự thận trọng này, bất kỳ mô hình nào có thể dự báo tốt sự gia tăng ban đầu có thể nhận lấy một sự không chính xác và hấp tấp đặt lệnh mua một cách nhanh chóng theo sau bởi một lệnh bán. Như vậy những thay đổi nhanh chóng là điều không mong muốn kể từ khi khối lượng giao dịch gia tăng cùng với các chi phí giao dịch thích hợp.

Hình 3.12. Việc huấn luyện và kiểm nghiệm dữ liệu cho lãi suất trong trường

hợp giá xuống

Hình 3.13. Chỉ số S&P 500 được dự báo và kỳ vọng trong trường hợp giá

3.5.4. Kết quả thử nghiệm cho cảhai trường hợp

Sau khi đưa ra dự báo kết quả được so sánh với thực tế theo như hình 3.14

Hình 3.14. Kết quả so sánh của S&P 500 thực tế và dự báo

Ta có kết quả thống kê kết quả đầu ra như sau:

Xác suất chính xác của mô hình :

Dự báo Xác suất

Thị trường lên 88.1335% Thị trường xuống 84.21035%

So sánh với phương pháp thống kê truyền thống là mô hình hồi quy tuyến tính đa biến ta có được kết quả sau:

Neural network Mô hình hồi quy tuyến tính đa biến R square 0.9935 0.9671 Trung bình 0.1759 0.2914 Độ lệch chuẩn 11.50 24.95 Xác suất chính xác thị trường lên 88.13% 84.21% Xác suất chính xác thị trường xuống 72.5% 57.71%

Từ xác suất chính xác của mô hình cho thấy mô hình neural network có thể dự đoán chính xác thị trường tài chính nếu có dữ liệu đầu vào thích hợp . Khi so sánh với phân tích hồi quy, neural network thì tốt hơn cho các nhà đầu tư vì một số lý do:

Mean square error 130.975

Mean absolute error 8.821 Min. absolute error 0.039 Max. absolute error 31.792 Correlation coefficient r 0.9968

- Khi sử dụng hồi quy tuyến tính đa biến, các giả định hồi quy chủ yếu phải đúng. Giả định tuyến tính tự bản thân nó không chứa đựng nhiều trường hợp. Neural Network có thể xử lý cả tuyến tính và phi tuyến.

- Khi sử dụng phân tích hồi quy tuyến tính đa biến, nhà đầu tư cần có một kiên thức sâu rộng về thống kê để đảm bảo các biến độc lập càn thiết cần sử dụng.

- Sau khi nghiên cứu, kết quả cho thấy Neural Network chính xác hơn đáng kể so với hồi quy tuyến tính đa biến.

KẾT LUẬN

Ngày nay, cùng với sự phát triển kinh tế của Thế giới, nền kinh tế Việt Nam được dự báo là vẫn trên đà tăng trưởng, trong đó đầu tư tư nhân trong nước vẫn phát triển, các khu vực công nghiệp vẫn tiếp tục là nhân tố để thúc đẩy tăng trưởng kinh tế. Trước tình hình đó, nhu cầu sử dụng mô hình Neural Network ngày càng tăng nên các phần mềm thiết kế, xử lý ra đời ngày càng nhiều bên cạnh chương trình truyền thống thường sử dụng là MATLAB. Hiện nay, các phần mềm phổ biến được thiết kế dùng cho mô hình Neural Network gồm có Alyuda

NeuroIntelligence, Stuttgart Neural Network Simulator, Emergen, JavaNNS và NeuroSolutions nhưng qua quá trình thử nghiệm và tìm hiểu thì phần mềm NeuroSolutions là phần mềm có nhiều tính năng ưu việt hơn cả và phù hợp để thực hiện mô hình Neural Network. NeuroSolutions là một trong những chương trình mạnh nhất hiện nay mô phỏng mô hình Neural Network cung cấp hai chương trinh con để thiết lập mô hình là Neuro Expert và Neuro Builder. Với phần mềm này, chúng ta bắt đầu tiến hành thu thập, xử lý dữ liệu thô và tiến hành điều chỉnh dữ liệu đầu vào sao cho các dữ liệu về mặt thời gian phải nhất quán với nhau. Sau đó tiến hành tổ chức file dữ liệu và phân tích các biến đầu vào bằng Data

DANH MỤC CÁC HÌNH

Hình 1.1. Cấu trúc Neural Network ... 3

Hình 1.2. Mô hình mạng Neural tổng quát... 3

Hình 1.3. Mô hình cấu trúc một Neuron ... 4

Hình 1.4. Mô hình neuron với vector nhập ... 5

Hình 1.5. Một lớp gồm nhiều Neuron ... 5

Hình 1.6. Mô hình mạng một lớp Neuron ... 6

Hình 1.7. Mô hình mạng một lớp được vẽ gọn ... 6

Hình 1.8. Mô hình mạng nhiều lớp Neuron ... 7

Hình 2.1. Phép chuyển đổi logaric khối lượng giao dịch tương lai hàng tháng của lúa mì ... 14

Hình 2.2. Phép thử Walk-forward trong chuỗi thời gian ... 18

Hình 2.3. Ví dụ đơn giản về bề mặt sai số của Neural Network ... 26

Hình 3.1. Giới thiệu giao diện phần mềm NeuroSolutions ... 32

Hình 3.2. Lựa chọn NeuralExpert ... 32

Hình 3.3. Biểu đồ thể hiện mức độ tương quan giữa các biến đầu vào và biến đầu ra ... 37

Hình 3.4. Chỉ số VN-INDEX đầu ra và mong đợi sau quá trình huấn luyện ... 38

Hình 3.5. Dữ liệu VN-INDEX dự báo từ mô hình và dữ liệu thực tế từ tuần thứ 3 đến tuần thứ 8 tiếp theo của dữ liệu ban đầu ... 39

Hình 3.6. Đồ thị so sánh VN-INDEX từ kết quả dự báo và VN-INDEX thực tế .... 39 Hình 3.7. Chỉ số S&P 500 từ năm 1972 đến 1996... 41 Hình 3.8. Việc huấn luyện và thử nghiệm dữ liệu (chỉ số S&P 500)

trong trường hợp đầu cơ giá lên ... 42 Hình 3.9. Việc huấn luyện và thử nghiệm dữ liệu cho lãi suất

trong trường hợp đầu cơ giá lên ... 43 Hình 3.10. Chỉ số S&P 500 được dự báo và kỳ vọng

trong trường hợp đầu cơ giá lên ... 44 Hình 3.11. Việc huấn luyện và thử nghiệm dữ liệu (chỉ số S&P 500)

trong trường hợp giá xuống ... 45 Hình 3.12. Việc huấn luyện và thử nghiệm dữ liệu cho lãi suất

trong trường hợp giá xuống ... 46 Hình 3.13. Chỉ số S&P 500 được dự báo và kỳ vọng

trong trường hợp giá xuống ... 46 Hình 3.14. Kết quả so sánh của S&P 500 thực tế và dự báo ... 47

Một phần của tài liệu Ứng dụng Neural Network trong việc dự báo thị trường chứng khoán VN (Trang 52 - 65)

Tải bản đầy đủ (PDF)

(65 trang)