Tiến hành thực hiện mô hình

Một phần của tài liệu Ứng dụng Neural Network trong việc dự báo thị trường chứng khoán VN (Trang 37 - 40)

Tiến hành thực hiện mô hình được đưa ra như là bước cuối, nhưng trong thực tế đòi hỏi phải xem xét cẩn thận trước khi tập hợp dữ liệu. Dữ liệu có sẵn, tiêu chuẩn định giá và các lần huấn luyện tất cả được sắp đặt bởi môi trường mà trong đó hệ thống Neural Network sẽ được phát triển. Hầu hết các nhà bán phần mềm của mô hình Neural Network cung cấp phương tiện bởi các mạng lưới được huấn luyện có thể được bổ sung trong các chương trình của mô hình Neural Network hoặc như là một tập tin thi hành. Nếu không một mạng lưới được huấn luyện có thể được tạo ra một cách dễ dàng trong bảng tính bằng cách hiểu rõ cấu trúc của nó, các hàm truyền, và trọng số. Sự thận trọng nên được đặt vào các dữ liệu biến đổi, việc chia tỷ lệ, và các tham số để duy trì cùng lúc từ lúc huấn luyện cho đến khi sử dụng thực tế.

Một ưu điểm của mô hình Neural Network là khả năng của nó có thể thích nghi được với sự thay đổi các điều kiện của thị trường thông qua sự huấn luyện trước đó. Trước khi triển khai, sự thể hiện của mô hình Neural Network sẽ giảm giá trị theo thời gian nếu không có huấn luyện lại để thay thế. Tuy nhiên, với sự huấn luyện lại trước đó cũng không có bất kỳ một sự bảo đảm nào là sự thể hiện của mô hình có thể được duy trì như là các giá trị thay đổi độc lập được chọn có thể trở nên ít quan trọng hơn.

Có đề nghị rằng độ thường xuyên của việc huấn luyện lại cho mạng lưới được triển khai cùng lức với việc sử dụng trong suốt quá trình huấn luyện cuối cùng của mô hình. Tuy nhiên, khi huấn luyện một số lượng lớn các mạng lưới để thu được mô hình cuối cùng, độ thường xuyên của việc huấn luyện lại ít đi cũng được chấp nhận để giữ cho số lần huấn luyện là hợp lý. Một mô hình tốt nên mạnh đối với độ thường xuyên của việc huấn luyện lại và sẽ thường xuyên cải thiện bằng cách thay thế việc huấn luyện lại thường xuyên.

KẾT LUẬN

Để thiết kế một mô hình Neural Network hoàn chỉnh cần thông qua qui trình tám bước. Đầu tiên là lựa chọn yếu tố đầu vào có liên quan đến các yếu tố đầu ra, rồi chúng ta tiến hành thu thập mọi dữ liệu. Dữ liệu có được sẽ trải qua quá trình xứ lý và phân tích dữ liệu. Kế đó, chúng ta cần phân chia dữ liệu cho từng giai đoạn: Huấn luyện, kiểm tra và công nhận. Bước tiếp theo là xây dựng các thông số quan trọng cho Neural Network, đó là việc tính toán và xác định số lượng các lớp ẩn, neuron ẩn, neuron đầu ra và loại hàm truyền. Sau đó cần phải xác định các tiêu chuẩn đánh giá kết quả chúng ta mong đợi cũng như yêu cầu đặt ra đối với quá trình huấn luyện. Cuối cùng ta thực hiện mô hình trên phần mềm vi tính phù hợp để cho ra kết quả.

CHƯƠNG 3: ỨNG DỤNG NEURAL NETWORK VÀO THỊ TRƯỜNG TÀI CHÍNH VIỆT NAM

3.1. DỰ BÁO KINH TẾ VIỆT NAM 2008

Cơ quan tình báo kinh tế Anh (EIU) dự báo kinh tế thế giới tăng trưởng 4,8% trong giai đoạn 2008 – 2009 (tính theo ngang giá sức mua có trọng số), giảm so với mức dự báo 5,1% cho năm 2007. Tăng trưởng kinh tế Mỹ, thị trường xuất khẩu hàng đầu của Việt Nam, dự báo tăng lên mức 2,1% năm 2008 và 2,8% năm 2009, cao hơn mức 1,9% năm 2007. Tốc độ tăng trưởng khiêm tốn của kinh tế Mỹ có thể sẽ làm tốc độ tăng trưởng xuất khẩu của Việt Nam chậm lại. Tuy nhiên việc kinh tế Trung Quốc tăng trưởng cao sẽ bù đắp phần nào sự giảm sút đó. Giá dầu thô thế giới dự báo giảm còn 69 USD/thùng năm 2008 và 63,3 USD/thùng năm 2009, theo đó sẽ tác động tiêu cực đối với nguồn thu từ xuất khẩu của Việt Nam (dầu thô chiếm tỷ trọng lớn nhất trong xuất khẩu của Việt Nam), tuy nhiên nhập khẩu các sản phẩm dầu mỏ sẽ rẻ hơn.

Trong giai đoạn 2008 – 2009, tốc độ tăng GDP thực tế dự báo có thể giảm nhẹ từ 8,4% năm 2007 xuống còn 8,1% năm 2008 và 8% năm 2009. Tăng trưởng GDP sẽ tiếp tục bị chi phối bởi tăng trưởng của ngành công nghiệp, chi tiêu dùng và đầu tư cố định. Mặc dù Ngân hàng Nhà nước có thể thắt chặt chính sách tiền tệ nhằm kìm chế tăng trưởng tín dụng nội địa, nhưng điều này dự báo sẽ không làm giảm quá mức niềm tin của các nhà đầu tư và người tiêu dùng. Trong năm 2008, tiêu dùng tại khu vực nông thôn dự báo sẽ tăng mạnh do giá cà phê và gạo tăng cao. Tổng cầu tiêu dùng tiếp tục tăng do việc làm tăng.

Đầu tư tư nhân trong nước sẽ vẫn phát triển trong giai đoạn 2008 – 2009 do Chính phủ tạo lập sân chơi bình đẳng hơn cho thành phần kinh tế tư nhân và kinh tế nhà nước. Việc Việt Nam gia nhập WTO cũng làm tăng niềm tin của các nhà đầu tư trực tiếp nước ngoài. Năm 2007, tổng vốn FDI cam kết đối với các dự án mới dự báo đạt 12 tỷ USD, gần gấp 3 lần số vốn cam kết năm 2005. Việc Việt Nam gia

nhập WTO giúp tăng kim ngạch xuất khẩu, tuy nhiên, việc cắt giảm hàng rào thuế quan cũng khiến hàng nhập khẩu trở nên rẻ hơn. Dự báo trong giai đoạn 2008- 2009, xuất khẩu ròng sẽ đóng góp âm vào tăng trưởng kinh tế.

Về mặt cung, khu vực công nghiệp sẽ tiếp tục là nhân tố chính thúc đẩy tăng trưởng kinh tế với tốc độ tăng trưởng khoảng 10%/năm (tính theo giá trị gia tăng). Ngành công nghiệp đạt mức tăng trưởng cao là do sự mở rộng năng lực sản xuất. Ngoài ra, ngành dệt may đã thích ứng tốt trong điều kiện tự do hóa thương mại toàn cầu. Tuy nhiên, Mỹ có thể sẽ tiếp tục tăng cường giám sát đối với mặt hàng may mặc nhập khẩu từ Việt Nam trong thời gian tới. Mỹ cũng có thể sẽ tiếp tục áp dụng các biện pháp chống bán phá giá đối với hàng hóa Việt Nam. Lĩnh vực dệt may đã tăng trưởng nhanh từ khi Việt Nam gia nhập WTO, tuy nhiên tính cạnh tranh xuất khẩu trong dài hạn cũng là vấn đề cần lưu ý. Trong giai đoạn 2008 – 2009, lĩnh vực dịch vụ dự báo tiếp tục duy trì mức tăng cao, đặc biệt là các dịch vụ tài chính và những dịch vụ liên quan đến du lịch.

Một phần của tài liệu Ứng dụng Neural Network trong việc dự báo thị trường chứng khoán VN (Trang 37 - 40)

Tải bản đầy đủ (PDF)

(65 trang)