Hình 3.11 cho thấy các giá trị của chỉ số trong phần huấn luyện và thử nghiệm cho trường hợp thứ hai, nơi mà việc huấn luyện dữ liệu bắt đầu từ dữ liệu điểm thứ 500 và dữ liệu điểm này dài 200 trong khi dữ liệu thử nghiệm vượt quá 75 tuần ngay lập tức theo sau việc huấn luyện dữ liệu và bao gồm một sự sụp đổ mạnh. Hình 3.12 cho thấy lãi suất cho việc huấn luyện và thử nghiệm được kết nối. Trong trường hợp này, lãi suất trì hoãn trong dài hạn đang rơi xuống trong chu kỳ huấn luyện khi chỉ số S&P 500 có xu hướng gia tăng, trong khi đó trong suốt chu kỳ thử nghiệm lãi suất đang gia tăng rất nhanh, khi chỉ số đang rơi xuống. Lãi suất trì hoãn trong ngắn hạn bởi 20 tuần cũng đang gia tăng lên nhưng với mức độ chậm hơn trong thời kỳ thử nghiệm. Vì vậy, trong trường hợp này, nó được trông đợi rằng tác động của việc gia tăng lãi suất sẽ dự báo được sự sụp đổ. Điều đó không là động lực chính trong việc huấn luyện dữ liệu cho chỉ số, từ khi chỉ số gia
tăng và rơi xuống hoặc theo một hướng khác là sự thay đổi trong chỉ số dao động giữa giá trị tốt nhất và xấu nhất. Mạng lưới có 7 neuron trong lớp ẩn được huấn luyện cho 900 quá trình lặp đi lặp lại, với kích cỡ 1 bước cố định là 0.4 và các kết quả thử nghiệm được giới thiệu chi tiết trong phần sau.
Hình 3.11. Việc huấn luyện và thử nghiệm dữ liệu (chỉ số S&P 500) trong
trường hợp giá xuống
Các kết quả kiểm nghiệm
Hình 3.13 cho thấy các kết quả kiểm nghiệm trong trường hợp này. Biểu đồ cho thấy rằng mô hình có khả năng dự báo sự sụp đổ mạnh trước 1 tuần nó thật sự xảy ra. Mặc dù vậy, đầu ra của mô hình thì thấp hơn các giá trị thực tế cho phần ban đầu trong việc phân loại thử nghiệm, không có xu hướng cho chỉ số cổ phiếu, mà có thể tác động lên mô hình để dự báo một vụ sụp đổ. Vì vậy, một mô hình chỉ sử dụng các giá trị chỉ số trong quá khứ có thể không có khả năng dự báo sự sụp đổ, mà nó được phân phối nhằm gia tăng lãi suất dài hạn. Trong trường hợp này, mô hình dự đoán chính xác xu hướng của chỉ số cổ phiếu 65 lần vượt ra ngoài mẫu thử
nghiệm là 75 điểm. Phần trăm sai số lớn nhất đạt được như là phần trăm của đầu ra kỳ vọng thì cao hơn nhiều so với với trường hợp 1 và đạt mức 13.7%, trong khi đó sai số trung bình chỉ là 4.18%. Nguồn chính của sai số ở đây là mạng lưới không thể dự báo tốt sự gia tăng ban đầu trong thị trường. Trong thực tế sự thận trọng này, bất kỳ mô hình nào có thể dự báo tốt sự gia tăng ban đầu có thể nhận lấy một sự không chính xác và hấp tấp đặt lệnh mua một cách nhanh chóng theo sau bởi một lệnh bán. Như vậy những thay đổi nhanh chóng là điều không mong muốn kể từ khi khối lượng giao dịch gia tăng cùng với các chi phí giao dịch thích hợp.
Hình 3.12. Việc huấn luyện và kiểm nghiệm dữ liệu cho lãi suất trong trường
hợp giá xuống
Hình 3.13. Chỉ số S&P 500 được dự báo và kỳ vọng trong trường hợp giá