TỔNG QUAN VỀ NÉN ẢNH

Một phần của tài liệu Các kĩ thuật nâng cao chất lượng và nén ảnh (Trang 27 - 32)

b. Lọc tần số từ không gian

2.1 TỔNG QUAN VỀ NÉN ẢNH

2.1.1 Giới thiệu chung về nén ảnh số

Thông thường, ảnh đen trắng chưa nén được biểu diễn bằng 8 bit/pixel và ảnh màu là 24 bit/pixel. Các kỹ thuật nén hiện nay cho phép dung lượng ảnh được nén giảm 30 đến 50 lần so với ảnh gốc mà ảnh vẫn giữ được độ trung thực cao. Độ trung thực của ảnh được đánh giá dựa trên tiêu chí như lỗi trung bình qn phương (MSE) hoặc tỷ số tín hiệu trên nhiễu (SNR) giữa ảnh gốc và ảnh nén.

Những phương pháp thường (như Compress trong hệ UNIX) không đem lại hiệu quả: tỷ lệ nén dữ liệu cho hình ảnh khơng q 2:1. Nhưng với những phương pháp chuyên dụng có thể đạt tới 30:1. Hai phương pháp nén hình ảnh nổi tiếng nhất hiện nay là của nhóm chuyên gia về hình ảnh động (Motion Picture Experts Group - MPEG) và liên hiệp các nhóm chuyên gia về hình ảnh (Joint Photo Graphic Experts Group - JPEG). Những phương pháp này đã trở thành chuẩn công nghiệp. Những nhược điểm cơ bản của các phương pháp này là sự mất mát thông tin và hiệu quả nén khơng cao đối với những hình ảnh phức tạp.

Tất cả các phương pháp nén ảnh đều dựa trên một nguyên lý đơn giản: trong dữ liệu có nhiều phần tử thừa và nén ảnh dựa trên cơ sở tìm ra những phần tử đó và loại bỏ chúng.

Các phương pháp thông dụng hiện nay như biến đổi cosin rời rạc, nén ảnh Wavelet (WIC) phải dùng đến biến đổi toán học và xấp xỉ các mối tương quan giữa các pixel. Với các phương pháp này ta có thể nén ảnh tới tỷ lệ 20:1 – 30:1. Nhưng những ảnh này (vì bị mất thơng tin) chỉ là những ảnh gần đúng với ảnh ban đầu, ngồi ra cịn có thể xuất hiện biến dạng hình ảnh.

2.1.2 Sơ đờ khới hệ thớng nén ảnh điển hình

Hình 2.1 Sơ đồ khối một hệ thống nén ảnh điển hình

- Khới biến đởi: Thường dùng phép biến đổi cosin rời rạc để tập trung năng lượng tín hiệu vào một số lượng nhỏ các hệ số khai triển để thực hiện phép nén hiệu quả hơn là dùng tín hiệu nguyên thủy.

- Khối lượng tử: Tạo ra một lượng kí hiệu giới hạn cho ảnh nén với hai kĩ thuật: lượng tử vô hướng (thực hiện lượng tử hóa cho từng phần dữ liệu) và lượng tử vector (thực hiện lượng tử hóa một lần một khối dữ liệu). Quá trình này không thuận nghịch. - Khối mã hóa: Gán một từ mã, một dòng bit nhị phân cho mỗi kí hiệu, số nguyên gần nhất.

2.1.3 Phân loại các kỹ thuật nén

Có nhiều cách phân loại các phương pháp nén khác nhau. Cách thứ nhất dựa vào nguyên lý nén. Cách này phân các phương pháp nén thành hai họ lớn:

- Nén ảnh không mất thông tin (nén không tổn hao): Với phương pháp này sau khi giải nén ta khơi phục được chính xác ảnh gốc. Các phương pháp nén này bao gồm mã hoá Huffman, mã hoá thuật tốn…

- Nén ảnh có mất thơng tin (nén có tởn hao): Ảnh giải nén có một sự sai khác nhỏ so với ảnh gốc. Các phương pháp này bao gồm:

 Lượng tử hố vơ hướng: PCM và DPCM.

 Lượng tử hoá vector.

 Mã hoá biến đổi: biến đổi cosin rời rạc (DCT), biến đổi Fourier nhanh (FFT).

 Mã hoá băng con.

Ngoải ra, ta có thể phân loại dựa vào cách thức thực hiện nén. Theo cách này, người ta cũng phân thành hai họ: Phương pháp nén dữ liệu không gian và phương pháp sử dụng mã hóa biến đổi. Hoặc cũng có thể phân loại dựa vào lý thuyết mã hóa. Cách này cũng phân các phương pháp nén thành hai họ: Các phương pháp nén thế hệ thứ nhất (gồm các phương pháp mà mức độ tính tốn là đơn giản, thí dụ việc lấy mẫu, gán từ mã,...) và các phương pháp nén thế hệ thứ hai (dựa vào độ bão hòa của tỷ lệ nén).

2.1.4 Các nguyên tắc khi nén ảnh

Một tính chất chung nhất của tất cả các ảnh số đó là tương quan giữa các pixel ở cạnh nhau lớn, điều này dẫn đến dư thừa thông tin để biểu diễn ảnh. Dư thừa thông tin sẽ làm cho việc mã hố khơng tối ưu. Do đó cơng việc cần làm để nén ảnh là phải tìm được các biểu diễn ảnh với tương quan nhỏ nhất để giảm thiểu độ dư thừa thông tin của ảnh. Thực tế, có hai kiểu dư thừa thông tin được phân loại như sau:

- Dư thừa trong miền không gian: tương quan giữa các giá trị pixel của ảnh, điều này có nghĩa rằng các pixel lân cận của ảnh có giá trị gần giống nhau (trừ những pixel ở giáp đường biên ảnh).

- Dư thừa trong miền tần số: Tương quan giữa các mặt phẳng màu hoặc dải phổ khác nhau.

Trọng tâm của các nghiên cứu về nén ảnh là tìm cách giảm số bit cần để biểu diễn ảnh bằng việc loại bỏ dư thừa trong miền không gian và miền tần số càng nhiều càng tốt.

2.1.5 Dư thừa số liệu

Nén số liệu là quá trình giảm lượng số liệu cần thiết để biểu diễn cùng một lượng thông tin cho trước. Cần phải phân biệt giữa số liệu và thông tin. Thực tế, số liệu và thông tin không đồng nghĩa với nhau. Số liệu (tín hiệu) chỉ là phương tiện dùng để truyền tải thông tin. Cùng một lượng thông tin cho trước có thể biểu diễn bằng các lượng số liệu khác nhau.

2.1.5.1 Dư thừa mã (Coding Redundancy)

Nếu các mức của tín hiệu video được mã hóa bằng các symbol nhiều hơn cần thiết (tuyệt đối) thì kết quả là có độ dư thừa mã. Để giảm độ dư thừa mã, trong nén ảnh thường sử dụng các mã VLC như mã Huffman, mã RLC... Lượng thông tin về hình ảnh có xác suất thấp hơn.

Nguyên lý cơ bản của việc nén ảnh này là các từ mã có độ dài biến đổi, cho phép gán các từ mã ngắn nhất cho các mức xám có tần suất xuất hiện nhiều nhất trong ảnh. Câu hỏi được đặt ra là: Cần bao nhiêu bit để thay thế cho các mức xám trong một ảnh. Đó là, liệu có tồn tại dữ liệu nhỏ đủ để mã hóa đầy đủ một ảnh mà không gây ra tổn thất?

Ý tưởng này là khởi đầu cho việc thơng tin có thể được xử lí giống như cách xử lí xác suất. Với giả định này, một sự kiện ngẫu nhiên E với xác suất P(E) có chứa lượng thơng tin: I(E) = log ) ( 1 E P = – log P(E) (2.1) [2]

Nếu P(E) = 1 (sự kiện ln ln đúng) thì I(E) = 0 và khơng có thơng tin nào trong nó. Vì khơng có sự khơng chắc chắn nào liên quan tới sự kiện nên sẽ khơng có thơng tin được truyền tải thơng báo rằng sự kiện đó đã xảy ra. Cho một tập hợp các sự kiện ngẫu nhiên gốc rời rạc {a1, a2, …, aj} có xác suất tương ứng là {P(a1), P(a2), …, P(aj)}, lượng thơng tin trung bình trên mỗi đầu ra (hay còn gọi là entropy) là:

H = – ∑ = J j j j P a a P 1 ) ( log ) ( (2.2) [2]

Nếu một ảnh nhận được là một mẫu “nguồn mức xám”, chúng ta có thể mơ hình hóa các xác suất kí hiệu của nguồn bằng cách sử dụng một ma trận mức xám của ảnh này và tính tốn giá trị xấp xỉ (gọi là xấp xỉ thứ tự ưu tiên: first-order estimate) của entropy gốc: ~ H = – ∑ = L k r k r k r P r P 1 ) ( log ) ( (2.3) [2]

Giá trị xấp xỉ được tính toán bởi hàm entropy (với giả thiết mỗi mức xám được mã hóa đợc lập) có biên thấp hơn nhờ việc loại bỏ dư thừa mã.

2.1.5.2 Dư thừa trong pixel ( Interpixel Redudancy)

Vì giá trị của một pixel bất kì nào đó cũng có thể được dự báo từ giá trị của các lân cận của nó, nên thông tin từ các pixel riêng là tương đối nhỏ. Sự tham gia của một pixel riêng vào một ảnh là dư thừa. Nhiều tên (bao gồm: dư thừa không gian, dư thừa hình học, dư thừa trong ảnh) được đặt ra để phân biệt sự phụ thuộc này của các pixel. Ta dùng độ dư thừa trong pixel để chỉ tất cả các tên trên. Để giảm độ dư thừa trong pixel của một ảnh, dãy pixel hai chiều dùng cho việc nhìn và nội suy, phải được biến đổi thành một dạng có hiệu quả hơn.

Người ta đưa ra mợt phương pháp gọi là mã hóa dự đốn khơng tởn thất để loại bỏ các dư thừa trong pixel của các pixel kề nhau bằng cách chỉ đưa ra và mã hóa thơng tin mới trong mỗi pixel. “Thông tin mới” của 1 pixel là sự khác biệt giữa giá trị thực tế và giá trị dự đốn của pixel đó.

Hình 2.2 Mơ hình mã hóa dự đốn khơng tởn thất bao gờm bộ mã hóa và bộ giải mã2.1.5.3 Dư thừa tâm sinh lý (Psychovisual Redudancy)2.1.5.3 Dư thừa tâm sinh lý (Psychovisual Redudancy) 2.1.5.3 Dư thừa tâm sinh lý (Psychovisual Redudancy)

Bằng trực quan ta thấy, sự thu nhận cường độ ánh sáng thay đổi chỉ giới hạn trong một phạm vi nhất định. Hiện tượng này xuất phát từ sự thật là mắt không đáp ứng với cùng độ nhạy của tất cả các thông tin nhìn thấy. Thông tin đơn giản có tầm quan trọng ít hơn thông tin khác trong vùng nhìn thấy. Thông tin này được gọi là độ dư thừa tâm sinh lý. Nó có thể được loại bỏ mà không ảnh hưởng đáng kể đến chất lượng

thu nhận ảnh. Khác với độ dư thừa mã và dư thừa trong pixel, độ dư thừa tâm sinh lý có liên quan đến thơng tin theo định lượng. Q trình loại bỏ nó là đáng kể bởi vì thơng tin của nó khơng cần thiết cho q trình xử lí thị giác chuẩn. Dư thừa tâm sinh lí có quan hệ tới việc lượng tử hóa. Điều đó có nghĩa là ánh xạ một khoảng rộng các giá trị đầu vào lên một số hữu hạn các giá trị đầu ra. Khi nó là toán tử không đảo ngược (mất thông tin) cho kết quả nén số liệu có tổn hao.

2.1.6 Giới thiệu một số kỹ thuật sử dụng trong nén ảnh

2.1.6.1 Mã hoá dựa trên phép biến đổi DCT

Nguyên tắc chính của phương pháp mã hố này là biến đổi tập các giá trị pixel của ảnh trong miền không gian sang một tập các giá trị khác trong miền tần số sao cho các hệ số trong tập giá trị mới này có tương quan giữa các điểm ảnh gần nhau nhỏ hơn.

Hình 2.3 Sơ đồ mã hóa và giải mã dùng biến đổi DCT [4]

Một phần của tài liệu Các kĩ thuật nâng cao chất lượng và nén ảnh (Trang 27 - 32)

Tải bản đầy đủ (DOC)

(73 trang)
w