Các hệ thống Microcarrier cho phép kiểm soát các thông số nuôi cấy một cách hoàn hảo (ví dụ: pH, mức độ khí…). Kỹ thuật Microcarrier cung cấp một
phương pháp cho sựsinh trưởng của các tế bào bám dính ở trong một hệ thống có tất cả thuận lợi của việc nuôi cấy dạng huyền phù. Việc kiểm soát và lấy mẫu trong nuôi cấy Microcarrier đơn giản hơn so với bất kỳ kỹ thuật khác trong việc tạo ra một sốlượng lớn các tế bào bám dính (Nilsson & Kjell, 1998).
*) Sự bảo vệ chống lại stress vật lý và hóa học
Các Microcarriers dạng macroporous bảo vệ các tế bào kháng lại đầu nhọn của máy khuấy, đặc biệt khi sản xuất ở quy mô lớn. Việc sục khí với các vi bong bóng sử dụng oxy tinh khiết cũng có thể thực hiện được do có sự bảo vệ này. Các tế bào có khả năng chịu đựng với nhiều stress hóa học như là lactate, amoni và
oxygen nếu chúng được sinh ra ở vi môi trường xung quanh các lỗ (Nilsson & Kjell, 1998).
*) Những yêu cầu được giảm thiểu cho môi trường nuôi cấy
Khi so sánh với các kỹ thuật nuôi tế bào 1 lớp hoặc nuôi huyền phù khác, việc nuôi cấy Microcarrier có khuấy đã tăng năng suất lên tới 100 lần đối với nhiều tế bào trong một thể tích môi trường nuôi nhất định. Năng suất siêu cao đã được báo cáo đối với một phạm vi rộng của các hệ thống bao gồm các tếbào xơ
phôi gà, tế bào thận lợn, tế bào cá, tế bào não chuột Hamster Trung Quốc, tế bào sợi người, tế bào thận khỉ sơ cấp và các tế bào sợi chuột đã biến đổi. Sự yêu cầu tối giản đối với môi trường nuôi cấy đã tạo ra một sự tiết kiệm đáng kể trong chi phí nuôi cấy tếbào, đặc biệt khi chất huyết thanh bổ sung đắt như là huyết thanh bào thai bê. Các Microcarrier dạng lỗ đặc biệt cung cấp một vi môi trường hoàn hảo ở đó các tế bào có thể trao đổi những hornome sinh trưởng tự tiết của chính chúng, bởi vậy cho phép môi trường sử dụng không cần bổ sung protein (Nilsson & Kjell, 1998).
*) Những yêu cầu giảm thiểu về phòng Lab
Nuôi cấy Microcarrier cho phép nuôi cấy một số lượng lớn các tế bào trong một thể tích nhỏ (hơn 1011 tế bào/l), sử dụng rất ít các thiết bị nuôi. Ví dụ, một
người kỹ thuật có thể xử lý một sản phẩm vắc xin tương đương với 900 bình roller trên một tuần. Việc nuôi cấy Microcarrier có thể đạt năng suất tế bào ngang bằng với 50 chai roller (chai có diện tích 490 cm2) và 1 tới 1,5 ml của các hạt có lỗ có
thể đạt năng suất ngang bằng một chai roller có diện tích 850 cm2. Các quy trình
trên Microcarrier đã được đơn giản hóa, giảm nhân lực lao động cần thiết cho việc sản xuất hàng ngày. Các tế bào tách biệt từmôi trường nuôi cấy đơn giản, khi quá trình khuấy dừng lại các tế bào lắng kết dưới sựảnh hưởng của trọng lực và dịch trong phía trên có thểđược loại bỏ. Không giống với các hệ thống nuôi cấy huyền phù tế bào, không cần thiết phải thêm bước ly tâm (Nilsson & Kjell, 1998).
*) Nguy cơ tạp nhiễm thấp
Trong nuôi cấy tếbào, nguy cơ tạp nhiễm có liên quan tới sốlượng các bước thao tác (ví dụ: mở và đóng các thiết bị nuôi) để sản xuất một lượng tế bào hoặc một sản phẩm nhất định. Nuôi cấy Microcarrier giảm thiểu sốlượng các bước thao
tác. Nguy cơ tạp nhiễm được giảm thiểu rất nhiều khi sản xuất một lượng lớn tế
bào ở trong một đợt nuôi cấy Microcarrier so với vài trăm bình roller (Nilsson & Kjell, 1998).
2.5.2. Sự phát triển của các hạt chất mang
Ý tưởng nuôi cấy tế bào động vật trên Microcarrier được hình thành đầu tiên bởi Van Wezel. Trong các thí nghiệm đầu tiên, Van Wezel đã sử dụng môi
trường trao đổi ion đính hạt DEAE Sephadex ™ A-50 làm Microcarrier. Điều
này tỏ ra hữu ích trong các thí nghiệm ban đầu vì nó cung cấp một bề mặt nuôi cấy với diện tích / thể tích bề mặt lớn,mật độ phù hợp (Van Wezel, 1973). Sử
dụng DEAE Sephadex A-50 ở nồng độ 1 mg / mL, Van Wezel đã chứng minh rằng một hệ thống Microcarrier đồng nhất có thểđược sử dụng cho nuôi cấy quy mô lớn. Công trình đầu tiên này minh họa tiềm năng của kỹ thuật Microcarrier để
sản xuất vi rút, và các thí nghiệm sau đó đã xác định rằng kỹ thuật này có thể được nhân rộng cho nhiều quy trình sản xuất. Người ta tin rằng mật độ tế bào tối
đa (năng suất) trong nuôi cấy Microcarrier sẽ phụ thuộc vào diện tích tiếp xúc bề
mặt Microcarrier (Van Hemert & cs., 1969). Tuy nhiên, khi vượt quá số lượng DEAE Sephadex A-50 1-2 mg / mL thì nhận thấy không có sựgia tăng tỷ lệ nào
trong năng suất tế bào (Van Hemert & cs., 1969). Điều này được biểu hiện bởi quá trình bám kém của nhiều loại tế bào trong giai đoạn đầu của quá trình nuôi cấy, sự nhân lên của tế bào chậm, và sản lượng tế bào khi thu hoạch thấp. Giải thích cho hiện tượng này rất nhiều nguyên nhân, nhưng giờ đây người ta đã biết rằng mức độ thay đổi tỷ lệ các hạt DEAE Sephadex A-50 không tối ưu cho sự
Sau đó, Hạt Cytodex 1 phát triển và thay thế hạt DEAE Sephadex A-50. Sản phẩm này là sản phẩm đầu tiên cho phép phát huy mọi tiềm năng của nuôi cấy trên Microcarrier với quy mô lớn có thể lên tới vài trăm lít. Cytodex 1 là phù
hợp khi nuôi cấy các tế bào có hình thái giống như nguyên bào sợi (Hirtenstein & Clark, 1980).
Cơ hội phát triển của nuôi cấy Microcarrier được tăng lên nữa khi có sự ra
đời của hạt Cytodex 3. Cytodex 3 dựa trên nguyên tắc hoàn toàn khác cho nuôi cấy Microcarrier. Trong khi hầu hết các bề mặt được sử dụng trong nuôi cấy tế bào ( thủy tinh, nhựa, cytodex1) có mặt độ nhỏ các phân tử tích điện để thúc đẩy sự
gắn kết và tăng trưởng của tế bào thì cytodex 3 có 1 lớp bề mặt collagen bề mặt bị
biến tính được liên kết chéo đến 1 ma trận dextran làm sản lượng tếbào được nâng lên tối đa. Cytodex 3 có hiệu quả tuyệt vời đối với các tế bào có hình thái giống
như biểu mô (Nilsson & Mosbach, 1980).
Bước tiến quan trọng tiếp theo là các vi sóng siêu nhỏgelatin được phát triển bởi Kjell Nilsson, cho phép sự phát triển bên trong các hạt, do đó làm tăng mật độ
tế bào và bảo vệ các tế bào (Nilsson & cs., 1986).
Cytopore vẫn là một sự phát triển hơn nữa giữ hầu hết các thuộc tính tương
tựnhư Cytodex nhưng tăng diện tích bề mặt thông qua một cấu trúc vĩ mô (Blüml & cs., 1992).
2.5.3. Một số ứng dụng của Microcarrier
Hơn 600 bài báo phản ánh nhiều ứng dụng thành công của công nghệ
Microcarrier và số lượng lớn các dòng tếbào khác nhau được nuôi cấy. Ngày nay,
ứng dụng chính của nó là sản xuất vắc xin, véc tơ cho liệu pháp gen, protein tự
nhiên và tái tổ hợp bao gồm cả các kháng thểđơn dòng.
2.5.3.1. Vắc xin
Phần lớn các nhà sản xuất vắc xin ở châu Âu và nhiều nơi khác trên thế giới sử dụng hệ thống Microcarrier để sản xuất vắc xin nhược độc hoặc vô hoạt để sử
dụng cho người và thú y.
Một hội thảo Microcarrier (2002 tại Rome) đã xác nhận nhiều ứng dụng trong ngành công nghiệp vắc xin:
Bảng 2.2. Một số ứng dụng Microcarrier trong ngành sản xuất vắc xin
Tên công ty Bài báo Tạp chí/ bằng sáng chế Microcarrier
Baxter, Áo Vắc xin cúm, đậu mùa Hội thảo Microcarrier 2002 Cytodex 3 NVI, Hà Lan Sản xuất IPV Hội thảo Microcarrier 2002 Cytodex 3
GSK
Nuôi cấy Microcarrier mật
độ cao cho sản xuất vi rút,
vắc xin bại liệt trên tế bào
Vero.
Tư vấn.Hoạt hình.Tế bào-
Biol. Cytodex 3
Aventis Nuôi cấy tế bào JEV, vero
quy mô 2000l Bằng sáng chế Cytodex 1 Viện pastuer
tunis
Sản xuất Vắc xin giả dại trên
tế bào BHK, Vero Hội thảo Microcarrier 2002 Cytodex 1
2.5.3.2. Sản xuất vi rút và tế bào
Các tế bào được nuôi cấy trên Microcarrier thường được sử dụng làm nền
để sản xuất vi rút hoặc các sản phẩm tế bào.
Hệ thống Microcarrier với một hệ thống nuôi cấy nhỏ gọn cho phép nuôi cấy một lượng lớn vi rút và nhiều loại vắc xin. Vắc xin được sản xuất trong hệ thống Microcarrier bao gồm bại liệt, rubella, bệnh dại, cúm, viêm não Nhật Bản, RSV và vắc xin bệnh lở mồm long móng (FMD).
Những lợi thế của nuôi cấy Microcarrier để sản xuất vắc xin bao gồm tăng năng suất, chi phí thấp hơn và giảm tạp nhiễm khi so sánh với các phương pháp
nuôi cấy tế bào khác. Von Seefried và Chun đã báo cáo sản lượng cao của vi rút bại liệt có khảnăng lây nhiễm cao (8,84 log 10 TCID50 / mL trở lên) khi sử dụng nguyên bào sợi của người (MRC-5) phát triển trên Cytodex (Chun, 1981). Các tế
bào Vero phát triển trên Cytodex đã được sử dụng để sản xuất vắc xin bại liệt ổn
định từ thể tích nuôi cấy 140 lít (Montagnon& cs., 1981).
Spier và Whiteside đã so sánh việc sản xuất vi rút FMD từ các tế bào BHK
được phát triển trên Microcarrier và huyền phù. Nuôi cấy Microcarrier của vi rút FMD Type O đã xác định vi rút có khả năng lây nhiễm cao hơn so với nuôi cấy huyền phù (Spier & cs., 1976).
2.5.3.3. Protein tự nhiên và tái tổ hợp
Một số quy trình sản xuất protein tự nhiên dựa trên quá trình nuôi cấy các dòng tế bào lưỡng bội trên Microcarrier. Hầu hết các protein tái tổ hợp mới được thể hiện trong các tế bào CHO. Chúng gắn vào và phát triển ban đầu trên các sóng siêu nhỏ bề mặt, nhưng sau một vài ngày tổng hợp và bắt đầu rơi ra. Phần lớn các tếbào CHO đã được điều chỉnh cho nuôi cấy huyền phù nhưng mặt độ tế bào phát triển ở mức khá thấp so với nuôi cấy Microcarrier.
Tuy nhiên, gần đây, một số quy trình sử dụng các vi sóng siêu nhỏ để tăng
mật độ tế bào đã được phát triển. Trong bài báo của Shirokaze, khi nuôi cấy Microcarrier thì năng suất r-Il4 có thểtăng gấp đôi với nuôi cấy huyền phù. Sản lượng được đo bằng ELISA trong khoảng thời gian 11 ngày (Shirokaze & cs., 1995).
Interferon đã được sản xuất với năng suất cao từ Microcarrier. Báo cáo đầu tiên mô tả sản lượng interferon đạt 4 × 103 IU HuIFNb / 106 nguyên bào sợi của
con người (Giard & cs., 1979). Clark và Hirtenstein đã tối ưu hóa quy trình thử
nghiệm phát triển tế bào và sửa đổi quy trình cảm ứng để mang lại 3 × 104 IU HuIFNb / 106 nguyên bào sợi của con người. Điều này tương ứng với 2 × 104 IU HuIFNb / mg Cytodex và kỹ thuật này có thểđược sử dụng để tạo ra nuôi cấy 3 × 108 IU HuIFNb / 5 lít (Clark &Hirtenstein, 1981).
Nuôi cấy Microcarrier đã cho phép sự phát triển của một sốlượng lớn tế bào
ung thư biểu mô đại tràng ở người để sản xuất kháng nguyên carcinoembryonic (Page & Dufour, 1979).
PHẦN 3. NỘI DUNG - VẬT LIỆU- PHƯƠNG PHÁP NGHIÊN CỨU
3.1. NỘI DUNG NGHIÊN CỨU
3.1.1. Nghiên cứu xây dựng quy trình nuôi cấy tế bào PK 15 trên hệ thống Microcarrier Microcarrier
- Nghiên cứu tốc độ khuấy và lưu lượng khí;
- Nghiên cứu sốlượng đầu vào của tế bào và các hạt Cytodex;
- Nghiên cứu môi trường nuôi và pH môi trường nuôi;
- Nghiên cứu đường cong sinh trưởng của tế bào PK 15 trên Microcarrier.
3.1.2. Nghiên cứu xây dựng quy trình gây nhiễm Vi rút trên tế bào PK 15 hệ thống Microcarrier thống Microcarrier
- Nghiên cứu môi trường nuôi duy trì và pH môi trường nuôi;
- Nghiên cứu xác định liều gây nhiễm của vi rút;
- Nghiên cứu đường cong sinh trưởng của vi rút và xác định giờ thu hoạch.
3.1.3. Đánh giá 1 số chỉ tiêu của vắc xin DTL sau khi thu hoạch
- Tính an toàn của vắc xin trên lợn; - Tính sinh miễn dịch vắc xin trên lợn.
3.2. ĐỐI TƯỢNG VÀ VẬT LIỆU NGHIÊN CỨU3.2.1. Đối tượng nghiên cứu 3.2.1. Đối tượng nghiên cứu
Tế bào PK 15 đang dùng sản xuất (working cell bank) giữ giống tại công ty Hanvet;
Giống vi rút nhược độc CSF working seed đang dùng sản xuất (Product Seed); Vắc xin DTL nhược độc chủng C được sản xuất tại công ty Hanvet.
3.2.2. Vật liệu nghiên cứu
3.2.2.1. Thiết bị
Hệ thống Microcarrier; Tủấm CO2, tủấm thường;
Máy bơm chân không;
Máy khuấy từ;
Cân phân tích; Cân điện tử; Tủ lạnh 2-8˚C;
Tủ lạnh -40˚C , -80˚C;
Box cấy an toàn sinh học cấp 2; Kính hiển vi soi ngược;
Kính hiển vi huỳnh quang.
3.2.2.2. Dụng cụ
Hạt Cytodex-1; Tế bào PK 15;Vi rút DTL chủng C;Chai T-flask; Buồng đếm hồng cầu;
Đĩa 96 giếng đáy chữ U;
Ống falcon 15ml, 50ml;
Chai schott 500ml, 1 lít, 2 lít, 5 lít, 10 lít; Pipet aid;
Pipet man: 200µl, 1ml, 8 kênh, 12 kênh; Pippet thủy tinh10ml, 20ml;
Đầu tuýp 200µl, 1ml, 5ml; Giấy chỉ thị nhiệt;
Găng tay y tế;
3.2.2.3. Hóa chất
Môi trường nuôi cấy tế bào: MEM (Gibco), DMEM (Gibco), M199 (Gibco),
LH (Merck), Hank, PBS... Tên sản phẩm Hãng Code DMEM Gibco 31600034 M199 Gibco 31100019 LH Gibco LP0048B Hank Gibco 88284 MEM Gibco 61100061 PBS
Tên sản phẩm Hãng Code
Hepes Gibco 1117320025 Trypan blu Merck 111132 Tween 20 Merck 8221840500 Formaldehyte Merck 1040031000 Trypsin-EDTA Gibco 25200056 FBS Gibco 10439024
3.3. ĐỊA ĐIỂM NGHIÊN CỨU
Phòng tế bào - trung tâm nghiên cứu - Công ty TNHH dược Hanvet - KCN phố nối A- Hưng Yên.
3.4. THỜI GIAN NGHIÊN CỨU
Từ6/2019 đến 5/2020.
3.5. PHƯƠNG PHÁP NGHIÊN CỨU
Các nghiên cứu được thự hiện trên hệ thống Bioreactor – Bioflo 320.