5. Bố cục của luận văn
3.1.3. Lựa chọn giải thuật giải quyết bài toán
Từ những dữ liệu đã được thu thập và lưu trữ để áp dụng cho bài toán chẩn đoán bệnh RLTC mà luận văn đang xây dựng, thì cần phải tìm kiếm những thông tin gì? Những thông tin đó giúp ích gì cho việc dự đoán?
Từ góc độ xây dựng mô hình dự đoán, hệ thống cần phải đáp ứng các câu hỏi được tạo ra một cách tự động và giải quyết được các thắc mắc của từng bệnh nhân. Các câu hỏi thường được tạo ra từ những thông tin từ bệnh nhân cung cấp như sau: Tuổi, giới tính, tình trạng bố mẹ hoặc người thân cải nhau, kết quả học tập, áp lực về kết quả học tập, mức độ thầy cô giáo ở trường nạt nộ la mắng, mức độ thường xuyên bệnh nhân cảm nhận các dấu hiệu/hành vi trong 7 ngày qua như rối loạn giấc ngủ, mệt mỏi, ăn không ngon miệng, cảm thấy buồn chán, khó chịu, không tập trung công việc, suy sụp tinh thần, mệt mỏi, vui vẻ, yêu cuộc sống, hy vọng vào tương lai, ít trò chuyện...thì kết quả bệnh nhân đó có mắc bệnh RLTC hay không? Dựa vào kết quả đó bệnh nhân có thể tham khảo để tiến hành làm tiếp các xét nghiệm khác hay không..
Kết quả của việc chẩn đoán sẽ được xác định từ những dữ liệu đầu vào mà những người sử dụng đã nhập vào. Hệ thống sẽ xem xét dựa trên mô hình mà đã được xây dựng để đưa ra những chẩn đoán chính xác. Như vậy, yêu cầu đặt ra ở đây là mô hình được phát sinh từ đâu. Đó chính là mục đích của việc KPDL từ những dữ liệu thu thập được mà chúng tôi muốn thực hiện trong đề tài này.
Có rất nhiều thuật toán xây dựng mô hình từ tập các dữ liệu đầu vào và phân lớp dữ liệu để đưa ra quyết định chẩn đoán. Ở đề tài này, chúng tôi không có tham vọng sẽ tìm hiểu hết tất cả các thuật toán nhưng sẽ nêu ra các
thuật toán thông dụng để từ đó áp dụng vào đề tài. Kết quả mong muốn là xây dựng 2 mô hình dựa vào thuật toán cây quyết định DT và thuật toán phân cụm để có được các tập luật nhằm đưa ra quyết định chẩn đoán cho bài toán.