7. Cấu trúc luận văn
1.4. TỔNG QUAN VỀ NANO BẠC
1.4.1. Giới thiệu về kim loại bạc
Bạc có kí hiệu Ag, số hiệu nguyên tử 47, khối lượng nguyên tử xấp xỉ 108, thuộc phân nhóm IB, chu kì 5. Bạc thường tìm thấy trong các quặng có lẫn chì, kẽm, đồng và vàng. Hàm lượng trong vỏ Trái đất là 10-5 %.
Bạc nano là vật liêu có diện tích bề mặt riêng lớn, có những đặc tính sau:
Tính khử khuẩn, chống nấm, khử mùi, có khả năng phát xạ tia hồng ngoại.
Không có hại cho sức khỏe con người với liều lượng tương đối cao.
Có khả năng phân tán ổn định trong các loại dung môi khác nhau (trong các dung môi phân cực như nước và trong các dung môi không phân cực như
benzene, toluene).
Độ bền hóa học cao, không bị biến đổi dưới tác dụng của ánh sáng và các tác nhân oxi hóa khử thông thường.
1.4.2. Tính chất của nano bạc
Những tính chất của hạt nano xuất hiện là hệ quả của nguyên lí giam cầm lượng tử và sự cân xứng cao của bề mặt các nguyên tử, những điều này phụ thuộc trực tiếp vào kích thước hạt nano [8]. Sự điều chỉnh kích thước của hạt nano có thể dẫn tới những thay đổi về tính chất của các hạt, đây là nguyên nhân và chủ đề của nhiều nghiên cứu. Không giống với vật liệu khối có những tính chất vật lí không thay đổi theo khối lượng, hạt nano cho thấy khả năng thay đổi những tính chất như điện, từ và quang học theo kích thước hạt. Sự xuất hiện những hiệu ứng này là bởi những mức năng lượng không giống nhau của các hạt nhỏ trong vật liệu khối, nhưng riêng rẽ, bởi hiệu ứng giam cầm điện tử. Vì thế, tính chất vật lí của hạt nano được xác định bởi kích thước của các hạt [4].
Vật liệu nano có những tính chất kì lạ khác hẳn với tính chất vật liệu khối đã nghiên cứu trước. Sự khác biệt về tính chất của vật liệu nano so với vật liệu khối được bắt nguồn từ hai hiện tượng sau đây
a. Hiệu ứng bề mặt
Khi vật liệu có kích thước nhỏ thì tỉ số giữa số nguyên tử trên bề mặt và tổng số nguyên tử (gọi là tỉ số f )của vật liệu gia tăng [4]. Do nguyên tử trên bề mặt có nhiều tính chất khác biệt so với tính chất của các nguyên tử ở bên trong lòng vật liệu nên khi kích thước vật liệu giảm đi thì hiệu ứng có liên quan đến các nguyên tử bề mặt, hay còn gọi là hiệu ứng bề mặt tăng lên do tỉ số f tăng. Khi kích thước của vật liệu giảm đến nm thì giá trị f này tăng lên đáng kể. Hiệu ứng bề mặt luôn có tác dụng với tất cả các giá trị của kích thước, hạt càng bé thì hiệu ứng càng lớn và ngược lại. Ở đây không có giới
hạn nào cả, ngay cả vật liệu khối truyền thống cũng có hiệu ứng bề mặt, chỉ có điều hiệu ứng này nhỏ thường bị bỏ qua. Vì vậy, việc ứng dụng hiệu ứng bề mặt của vật liệu nano tương đối dễ dàng.
b. Hiệu ứng kích thước
Khác với hiệu ứng bề mặt, hiệu ứng kích thước của vật liệu nano đã làm cho vật liệu này trở nên kì lạ hơn nhiều so với các vật liệu truyền thống. Đối với một vật liệu, mỗi một tính chất của vật liệu này đều có một độ dài đặc trưng. Độ dài đặc trưng của rất nhiều các tính chất của vật liệu đều rơi vào kích thước nm. Ở vật liệu khối, kích thước vật liệu lớn hơn nhiều lần độ dài đặc trưng này dẫn đến các tính chất vật lí đã biết. Nhưng khi kích thước của vật liệu có thể so sánh được với độ dài đặc trưng đó thì tính chất có liên quan đến độ dài đặc trưng bị thay đổi đột ngột, khác hẳn so với tính chất đã biết trước đó. Ở đây không có sự chuyển tiếp một cách liên tục về tính chất khi đi từ vật liệu khối đến vật liệu nano. Chính vì vậy, khi nói đến vật liệu nano, chúng ta phải nhắc đến tính chất đi kèm của vật liệu đó.
c. Tính chất quang
Như trên đã nói, tính chất quang học của hạt nano vàng, bạc trộn trong thủy tinh làm cho các sản phẩm từ thủy tinh có các màu sắc khác nhau đã được người La Mã sử dụng từ hàng ngàn năm trước. Các hiện tượng đó bắt nguồn từ hiện tượng cộng hưởng plasmon bề mặt do điện tử tự do trong hạt nano hấp thụ ánh sáng chiếu vào. Kim loại có nhiều điện tử tự do, các điện tử tự do này sẽ dao động dưới tác dụng của điện từ trường bên ngoài như ánh sáng. Thông thường các dao động bị dập tắt nhanh chóng bởi các sai hỏng mạng hay bởi chính các nút mạng tinh thể trong kim loại khi quãng đường tự do trung bình của điện tử nhỏ hơn kích thước. Nhưng khi kích thước của kim loại nhỏ hơn quãng đường tự do trung bình thì hiện tượng dập tắt không còn nữa mà điện tử sẽ dao động cộng hưởng với ánh sáng kích thích. Do vậy, tính
chất quang của hạt nano có được do sự dao động tập thể của các điện tử dẫn đến từ quá trình tương tác với bức xạ sóng điện từ. Khi dao động như vậy, các điện tử sẽ phân bố lại trong hạt nano làm cho hạt nano bị phân cực điện tạo thành một lưỡng cực điện. Do vậy xuất hiện một tần số cộng hưởng phụ thuộc vào nhiều yếu tố nhưng các yếu tố về hình dáng, độ lớn của hạt nano và môi trường xung quanh là các yếu tố ảnh hưởng nhiều nhất. Ngoài ra, mật độ hạt nano cũng ảnh hưởng đến tính chất quang. Nếu mật độ loãng thì có thể coi như gần đúng hạt tự do, nếu nồng độ cao thì phải tính đến ảnh hưởng của quá trình tương tác giữa các hạt.
d. Tính chất nhiệt
Nhiệt độ nóng chảy ( 0
nc
t ) của vật liệu phụ thuộc vào mức độ liên kết giữa các nguyên tử trong mạng tinh thể. Trong tinh thể, mỗi một nguyên tử có một số các nguyên tử lân cận có liên kết mạnh gọi là số phối vị. Các nguyên tử trên bề mặt vật liệu sẽ có số phối vị nhỏ hơn số phối vị của các nguyên tử ở bên trong nên chúng có thể dễ dàng tái sắp xếp để có thể ở trạng thái khác hơn. Như vậy, nếu kích thước của hạt nano giảm, nhiệt độ nóng chảy sẽ giảm. Ví dụ, hạt vàng 2 nm có 0 nc t = 500°C, kích thước 6 nm có 0 nc t = 950°C [24]. e. Tính chất điện
Tính dẫn điện của kim loại rất tốt, hay điện trở của kim loại nhỏ nhờ vào mật độ điện tử tự do cao trong đó. Đối với vật liệu khối, các lí luận về độ dẫn dựa trên cấu trúc vùng năng lượng của chất rắn. Điện trở của kim loại đến từ sự tán xạ của điện tử lên các sai hỏng trong mạng tinh thể và tán xạ với dao động nhiệt của nút mạng. Khi kích thước của vật liệu giảm dần, hiệu ứng lượng tử do giam hãm làm rời rạc hóa cấu trúc vùng năng lượng. Hệ quả của quá trình lượng tử hóa này đối với hạt nano là xuất hiện một hiệu ứng gọi là hiệu ứng chắn.
g. Tính chất xúc tác
Do hạt nano có số lượng nguyên tử hoạt động trên bề mặt lớn hơn so với kim loại khối nên hạt nano được sử dụng trong xúc tác sẽ tốt so với những chất rắn theo học thuyết thông thường. Những hạt nano của một dãy lớn của sự chuyển tiếp giữa kim loại và oxit kim loại đã được tìm thấy những hoạt tính xúc tác phụ thuộc kích thước các hạt, điều này đang được nghiên cứu mạnh mẽ. Hình dạng, sự ổn định và sắp xếp của các hạt đã được chứng minh là có ảnh hưởng tới hoạt tính xúc tác và vì thế cũng là đề tài của nhiều nghiên cứu hiện nay. Trong các ứng dụng cụ thể của hạt nano, hoạt tính xúc tác cần đến một chất nền phù hợp để ổn định, bảo vệ, ngăn ngừa sự kết tụ và có thể thu hồi lại.
h. Chấm lượng tử
Hầu hết các hiệu ứng điện tử quan trọng trong hạt nano bán dẫn là độ rộng của khe hở giữa trạng thái điện tử cao nhất (đỉnh vùng hóa trị) và trạng thái thấp nhất (đáy vùng dẫn). Sự hoạt động này theo sự giam cầm lượng tử do các hạt có đường kính nhỏ, mà ảnh hưởng trực tiếp tới tính chất quang học của các hạt bán dẫn so với vật liệu khối. Năng lượng tối thiểu cần để gây ra một cặp hố-điện tử trong hạt nano bán dẫn được quyết định bởi khe dải. Ánh sáng với năng lượng thấp hơn Eg không thể bị hấp thu bởi hạt nano, sự hấp thu ánh sáng cũng phụ thuộc vào kích thước hạt. Khi kích thước hạt giảm phổ hấp thụ đối với những hạt nhỏ hơn được dịch chuyển về bước sóng ngắn.
i. Plasmon
Các hạt nano kim loại có thể có phổ hấp thụ với đỉnh hấp thụ giống với của các hạt nano bán dẫn. Tuy nhiên, sự hấp thụ này không bắt nguồn từ sự chuyển tiếp các trạng thái năng lượng điện tử, thay vào đó hạt ở nano kim loại là phương thức tập hợp của các di chuyển đám mây điện tử bị kích thích. Dưới tác động của điện trường, có sự kích thích plasmon các electron tại bề mặt các hạt. Sự cộng hưởng này xảy ra tại tần số của ánh sáng tới và kết quả
là sự hấp thụ quang học. Hiện tượng này gọi là bề mặt plasmon (surfae plasmon), hay hấp thụ cộng hưởng plasma (plasma resonance absorption), hay vùng bề mặt plasmon (localized surface plasmons). Khi kích thước hạt giảm, các electron tự do bắt đầu tương tác với ranh giới của các hạt. Khi các hạt nano kim loại bị tác động bởi ánh sáng, điện trường của ánh sáng tới gây ra sự dao động mạnh của các điện tử tự do (các electron dẫn). Đối với các hạt nano có kích thước nhỏ hơn đáng kể so với bước sóng của ánh sáng, sự hấp thụ xảy ra trong phạm vi bước sóng hẹp, dải plasmon. Độ rộng, vị trí, và cường độ của sự tương tác plasmon biểu lộ bởi hạt nano phụ thuộc:
Hằng số điện môi của kim loại và vật liệu nền.
Kích thước và hình dạng hạt.
Sự tương tác giữa các hạt và chất nền.
Sự phân bố của các hạt trong chất nền.
1.4.3. Các phƣơng pháp chế tạo hạt nano bạc
Có 2 phương pháp để điều chế hạt nano kim loại bạc là phương pháp từ dưới lên và phương pháp từ trên xuống. Phương pháp từ dưới lên “bottom- up” là phương pháp tạo hạt nano từ các nguyên tử hoặc ion kết hợp lại với nhau. Phương pháp từ trên xuống “top-down” là phương pháp tạo các hạt nano từ vật liệu khối ban đầu. Đối với hạt nano bạc, người ta thường điều chế bằng phương pháp từ dưới lên. Nguyên tắc là khử ion bạc thành bạc. Các nguyên tử này sau đó liên kết với nhau tạo thành hạt nano và các hạt nano này sẽ được bọc bởi các chất ổn định như PVP, PVE, chitosan... Hiện nay các vật liệu kim loại nano như vàng, sắt, đồng, bạc dưới dạng bột hay dung dịch keo được chế tạo chủ yếu bằng các phương pháp sau
a. Phương pháp bay hơi vật lí
Bay hơi vật lí là phương pháp từ trên xuống, đó là một công cụ góp phần cho sự phát triển của công nghệ nano[10]. Bay hơi vật lí bao gồm kĩ thuật
ngưng tụ khí trơ, đồng ngưng tụ và ngưng tụ dòng hơi phun trên bia bắn. Kĩ thuật ngưng tụ khí trơ: cho hóa hơi sợi dây bạc tinh khiết ở nhiệt độ cao trong điều kiện chân không, sau đó dòng hơi bạc nguyên tử quá bão hòa được ngưng tụ và phát triển thành hạt bạc khi tiếp xúc với khí heli và được làm lạnh bởi nitơ lỏng.
Kĩ thuật đồng ngưng tụ: tương tự như ngưng tụ khí trơ nhưng quá trình hình thành và phát triển hạt xảy ra trên lớp bằng dung môi thích hợp.
Kĩ thuật ngưng tụ khí trơ và đồng ngưng tụ được thực hiện ở nhiệt độ cao (>20000C), sản phẩm tạo ra có độ tinh khiết cao, kích thước hạt nano bạc trung bình 75nm (phương pháp ngưng tụ khí trơ), 12nm (phương pháp đồng ngưng tụ).
b. Phương pháp ăn mòn laze
Đây là phương pháp từ trên xuống. Vật liệu ban đầu là một tấm bạc được đặt trong một dung dịch có chứa chất hoạt hóa bề mặt. Một chùm laser dạng xung có buớc sóng 532 nm, độ rộng xung là 10 ns, tần số 10Hz, năng lượng mỗi xung là 90mJ, đường kính vùng kim loại bị tác dụng từ 1nm - 3nm. Dưới tác dụng của chùm laser xung, các hạt nano có kích thước khoảng 10 nm được hình thành và được bao phủ bởi chất hoạt hóa bề mặt CnH2n+1SO4Na (với n = 8, 10, 12, 14) nồng độ từ 0,001 đến 0,1 M [21].
c. Phương pháp khử hóa học
Khử hóa học là một phương pháp được sử dụng phổ biến để chế tạo nano bạc theo phương thức từ dưới lên. Phương pháp khử hóa học là dùng các tác nhân hóa học để khử ion bạc thành bạc kim loại. Phản ứng được thực hiện trong dung dịch lỏng nên còn gọi là phản ứng hóa ướt.
Ag+ + e- → Ag0
Thông thường, nguồn cung cấp ion bạc là các muối của bạc như AgNO3. Các tác nhân khử thường dùng là natri bohydrua, focmandehyt, xitrat, etylen
glyxerol, ethanol... Gần đây có một số công trình nghiên cứu chế tạo keo nano bạc và bột nano bạc từ bạc nitrat nhưng sản phẩm trung gian là oxit bạc rồi từ oxit bạc tiếp tục khử về bạc kim loại nhằm thu được keo bạc có nồng độ cao. Để các hạt nano bạc phân tán tốt trong dung môi mà không bị kết tụ thành đám, người ta bao phủ hạt nano bạc bằng một lớp polyme, điều này giúp cho các hạt được bảo vệ tốt hơn tránh hiện tượng kết tủa, hơn nữa phương pháp này có thể làm cho bề mặt hạt nano có tính chất cần thiết.
Tác nhân khử Sodium citrate “C6H5O7Na3. Trong quá trình khử, bề mặt của hạt nano bạc hấp thụ các ion bạc tạo ra lớp ion dương trên bề mặt. Tiếp đó các ion âm citrate có nhiệm vụ bám xung quanh các hạt nano bằng lực hút tĩnh điện ngăn không cho chúng kết hợp lại với nhau. Nhờ vậy mà bề mặt của hạt nano bạc có một lớp keo citrate giúp chúng lơ lửng và phân tán đều trong dung dịch. Citrate trong quá trình vừa đóng vai trò làm tác nhân khử ion bạc để tạo thành hạt nano bạc, vừa đóng vai trò làm chất ổn định cho hạt nano bạc.
Tác nhân khử natri bohydrua khác với phương pháp sử dụng Sodium citrate, ở phương pháp này sau khi kết thúc phản ứng khử, người ta sử dụng các polyme như PVP, PVA, chitosan…làm tác nhân ổn định. Các polyme này bao bọc hạt nano bạc, ngăn chúng kết tụ với nhau, vì vậy mà hạt nano được bảo vệ tốt và tránh kết tủa.
d. Phương pháp hóa siêu âm
Phương pháp hóa siêu âm là các phản ứng hóa học được hỗ trợ bởi sóng siêu âm cũng được dùng để tạo hạt nano[7]. Hóa siêu âm là một chuyên ngành của hóa học, trong đó các phản ứng hóa học xảy ra dưới tác dụng của sóng siêu âm như một dạng xúc tác. Sóng siêu âm là sóng dọc, là quá trình truyền sự co lại và giãn nở của chất lỏng. Tần số thường sử dụng trong các máy siêu âm là 20 kHz cao hơn ngưỡng nhận biết của tai người (từ vài Hz đến 16 kHz). Khi sóng siêu âm đi qua một chất lỏng, sự giãn nở do siêu âm gây ra
áp suất âm trong chất lỏng kéo các phân tử chất lỏng ra xa nhau. Nếu cường độ siêu âm đủ mạnh thì sự giãn nở này sẽ tạo ra những lỗ hổng trong chất lỏng. Sự phát triển của các lỗ hổng phụ thuộc vào cường độ siêu âm. Khi cường độ siêu âm cao, các lỗ hổng nhỏ có thể phát triển rất nhanh. Sự giãn nở của các lỗ hổng đủ nhanh trong nửa đầu chu kì của một chu kì sóng siêu âm, nên đến nửa sau chu kì thì nó không có đủ thời gian để co lại nữa. Dưới các điều kiện này, kích thước của một lỗ hổng sẽ dao động theo các chu kì giãn