Các đặc trưng phonon quang của nano tinh thể bán dẫn

Một phần của tài liệu (LUẬN văn THẠC sĩ) chế tạo và nghiên cứu tính chất quang của nano tinh thể cdse không sử dụng trioctylphosphine (Trang 34 - 40)

Phonon là lượng tử của dao động của các nguyên tử xảy ra trong mạng tinh thể. Có hai kiểu phonon: phonon quang và phonon âm. Phonon có thể lan truyền trong mạng tinh thể như một sóng và thể hiện sự tán sắc phụ thuộc bước sóng hoặc vectơ sóng tương đương của chúng trong vùng Brillouin. Sự lan truyền phonon sẽ bị gián đoạn khi gặp một biên hạt trong tinh thể. Trong một hạt cô lập, phonon có thể bị phản xạ từ biên hạt và bị giam giữ bên trong hạt. Tuy nhiên, trong các tính toán lý thuyết, những hạt với kích thước micro mét có thể xem như một tinh thể vô hạn, hệ quả của sự giam giữ phonon được đề cập đến chỉ khi kích thước hạt ở bậc nano mét.

Nghiên cứu các đặc trưng phonon sẽ cho thêm các thông tin về NC mà các phương pháp quang phổ khác không nhận được. Tán xạ Raman (RS) là một trong những kỹ thuật quan trọng nhất dùng để nhận những thông tin của các đặc trưng phonon quang. Kỹ thuật RS cho phép đo nhanh và không tiếp xúc mẫu. Do rất nhạy với tính chất của tinh thể và sự sắp xếp các nguyên tử, RS là một phương pháp rất tốt để nghiên cứu NC. Một số mô hình lý thuyết mô tả RS trong NC đã được đề xuất. Trong phần này, chúng tôi trình bày mô hình giam giữ phonon của Campell và Fauchet (CF).

Mô hình giam giữ phonon của Campell và Fauchet

Trong quá trình RS đối với tinh thể khối, năng lượng và vectơ sóng q (động lượng) được bảo toàn. Giá trị lớn nhất (tương ứng với cấu hình tán xạ ngược) của vectơ tán xạ trong khoảng 5.104 cm-1 đối với ánh sáng khả kiến. Giá trị này nhỏ hơn nhiều so với vectơ sóng q của toàn bộ đường cong tán sắc

phonon trong vùng Brillouin, vectơ của q ở biên vùng Brillouin có giá trị  108 cm-1. Do đó, theo định luật bảo toàn vectơ sóng, chỉ những phonon với q  0 (lân cận tâm vùng Brillouin) tham gia vào quá trình tán xạ RS, đây là nội dung của qui tắc chọn lọc vectơ sóng q. Qui tắc chọn lọc vectơ sóng q  0 về bản chất là hệ quả của tính tuần hoàn vô hạn của mạng tinh thể. Tuy nhiên nếu tính tuần hoàn của mạng tinh thể bị gián đoạn, như trong trường hợp các NC, qui tắc chọn lọc vectơ sóng q  0sẽbị vi phạm và các phonon xa tâm vùng Brillouin cũng tham gia vào quá trình tán xạ RS. Do đó có sự dịch và mở rộng về phía tần số thấp trong phổ Raman của mode phonon quang dọc (LO) trong trường hợp của NC so với tinh thể khối vì đường cong tán sắc phonon LO là một hàm giảm đối với vectơ sóng q (Hình 1.20) [23]. Hơn nữa, đối với một NC có kích thước d, biên độ của hàm sóng phonon suy giảm đến một giá trị rất nhỏ ở lân cận biên vùng (Hình 1.21). Hình 1.20. Đường cong tán sắc phonon quang và phạm vi bất định q của vectơ sóng, 2 là phạm vi bất định tương ứng của tần số [23]. Hình 1.21. Hàm giam giữ W(r) đối với các NC

dạng cầu [23].

Sự hạn chế này đối với yếu tố không gian của hàm sóng dẫn đến một bất định của vectơ sóng q /dcủa phonon quang tâm vùng Brillouin, tương ứng với bất định 2 của tần số. Kết quả gây ra sự mở rộng bất đối xứng của mode phonon LO [23].

Campbell và Fauchet đã đề xuất mô hình giam giữ phonon dựa trên cơ sở hiện tượng vi phạm qui tắc chọn lọc vectơ q và mô tả cường độ mode LO Raman bằng biểu thức sau [24] :

        ax 2 3 2 2 0 0 C 0,q / 2 m q LO d q I q             (1.2) Trong đó: C(0,q) là hàm trọng số,  2  2  0, exp -qd /16 C q   ; (q) là

đường cong tán sắc của phonon quang được tính theo công thức

  2

0 .

q q

    với 0 là tần số của LO phonon trong tinh thể khối,  là độ rộng của nhánh phonon quang, 0 là độ rộng bán phổ (FWHM) của mode phonon LO trong tinh thể khối.

Trong các phép tính trên, 0 = 213cm-1;  = 118 cm-1 ; 0 = 8 cm-1 ; qmax= 0.4 (trong đơn vị 2

a

 ) [25].

Phonon quang bề mặt (SO)

Sự mở rộng bất đối xứng của các mode phonon LO khi kích thước giảm là vấn đề đã và đang được sự quan tâm và thảo luận. Nguyên nhân chính của sự mở rộng bất đối xứng ở phía tần số thấp của phổ phonon LO được cho rằng chủ yếu là do sự đóng góp của các mode phonon SO [26,27]. Tần số mode phonon SO phụ thuộc kích thước được tính toán theo mô hình liên tục điện môi và được viết như sau

    2 2 o m SO TO m R R          (1.3)

trong đó TO R là nhận từ tần số phonon quang ngang, o và là hằng số điện môi và hằng số điện môi tần số cao của vật liệu NC, mlà hằng số điện môi của môi trường xung quanh.

Hình 1.22 trình bày phổ RS của QD CdSe có kích thước khác nhau được khảo sát bởi Das và các cộng sự [28]. Das và các cộng sự cho rằng sự mở rộng

bất đối xứng của đỉnh LO là do có sự đóng góp của mode phonon SO. Do đó, để phân tích đóng góp của mode phonon SO, đỉnh LO được làm khớp với hai hàm Lorent. Tần số mode phonon LO có số sóng khoảng 210 cm-1 và dịch về phía tần số thấp (dịch đỏ) khi kích thước giảm trong khi đó tần số mode phonon SO có số sóng khoảng 190 cm -1 và dịch về phía tần số cao (dịch xanh). Đường liền nét màu đỏ là đường được làm khớp theo hai hàm Lorentz. Các đặc trưng phonon LO1 và SO1 được chỉ ra trên hình trèn phía trên bên phải (Hình 1.22 (a)). Hình 1.22 (b) là phổ RS của các QD CdSe có kích thước khác nhau từ 2,5 đến 5,2 nm, đường liền nét màu đỏ là đường làm khớp sử dụng hàm Lorentz cho mode phonon bề mặt SO và mode phonon quang dọc LO.

Hình 1.22. (a) Phổ RS của QD CdSe có kích thước 5,2 nm; (b) Phổ RS của QD CdSe thay đổi theo kích thước từ 2,5 đến 5,2 nm [28]

CHƯƠNG 2 THỰC NGHIỆM

Chương 2 sẽ trình bày về công nghệ chế tạo NC CdSe trong hệ phản ứng ODE - OA bằng phương pháp hóa ướt sử dụng kỹ thuật bơm nóng và các phương pháp khảo sát đặc trưng hình dạng, kích thước, cấu trúc tinh thể, tính chất quang cùng với các thông tin cần thiết về điều kiện đo.

Một phần của tài liệu (LUẬN văn THẠC sĩ) chế tạo và nghiên cứu tính chất quang của nano tinh thể cdse không sử dụng trioctylphosphine (Trang 34 - 40)

Tải bản đầy đủ (PDF)

(78 trang)