Bên cạnh các kết quảđã thu được, để tiếp tục bổ sung và phát triển đề tài, các công việc cần thực hiện bổ sung là:
- Khảo sát khảnăng hấp phụ, xúc tác quang phân hủy nhiều chất nhuộm màu hữu cơ khác như MO, Congo Red, ...
- Khảo sát, đề xuất cơ chế hấp phụ, xúc tác quang phân hủy các chất màu hữu
cơ của vật liệu tổ hợp.
- Phát triển linh kện điện sắc dựa trên mẫu tổ hợp DC60. - Nghiên cứu vềđộng học hấp phụ của mẫu tổ hợp.
70
TÀI LIỆU THAM KHẢO
[1] X. Liu et al., “Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3 /g-C3N4,” Appl. Surf. Sci., vol. 405, pp. 359–371, 2017.
[2] S. Wang, W. Fan, Z. Liu, A. Yu, and X. Jiang, “Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties,” J. Mater. Chem. C, vol. 6, no. 2, pp. 191–212, 2018.
[3] C. T. Nguyen et al., “Constraint effect caused by graphene on in situ grown Gr@WO3 -nanobrick hybrid material,” Ceram. Int., vol. 46, no. 7, pp. 8711– 8718, May 2020.
[4] M. Kang, J. Liang, F. Wang, X. Chen, Y. Lu, and J. Zhang, “Structural design of hexagonal/monoclinic WO3 phase junction for photocatalytic degradation,”
Mater. Res. Bull., vol. 121, no. May 2019, p. 110614, Jan. 2020.
[5] W. Li et al., “Hexagonal WO3·0.33H2O Hierarchical Microstructure with Efficient Photocatalytic Degradation Activity,” Catalysts, vol. 11, no. 4, p. 496, Apr. 2021.
[6] P. Roussel, P. Labbé, and D. Groult, “Symmetry and twins in the monophosphate tungsten bronze series (PO2)4(WO3)2 m (2 ≤ m ≤ 14),” Acta Crystallogr. Sect. B Struct. Sci., vol. 56, no. 3, pp. 377–391, Jun. 2000. [7] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-
zadeh, “Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications,” Adv. Funct. Mater., vol. 21, no. 12, pp. 2175–2196, Jun. 2011. [8] J. Oi, A. Kishimoto, T. Kudo, and M. Hiratani, “Hexagonal tungsten trioxide
obtained from peroxo-polytungstate and reversible lithium electro- intercalation into its framework,” J. Solid State Chem., vol. 96, no. 1, pp. 13–19, Jan. 1992.
[9] M. Gillet, K. Aguir, C. Lemire, E. Gillet, and K. Schierbaum, “The structure and electrical conductivity of vacuum-annealed WO3 thin films,” Thin Solid Films, vol. 467, no. 1–2, pp. 239–246, Nov. 2004.
[10] V. Dutta et al., “An overview on WO3 based photocatalyst for environmental remediation,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 105018, 2021.
[11] A. LABIDI et al., “Impedance spectroscopy on WO3 gas sensor,” Sensors Actuators B Chem., vol. 106, no. 2, pp. 713–718, May 2005.
[12] W. Wu, M. Wang, J. Ma, Y. Cao, and Y. Deng, “Electrochromic Metal Oxides: Recent Progress and Prospect,” Adv. Electron. Mater., vol. 4, no. 8, p. 1800185, Aug. 2018.
[13] S. Heusing and M. A. Aegerter, “Sol-Gel Coatings for Electrochromic Devices,” in Handbook of Sol-Gel Science and Technology, Cham: Springer International Publishing, 2018, pp. 2745–2792.
[14] A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Elsevier Ltd., 2018. [15] L. Li et al., “WO3 nanowires on carbon papers: electronic transport,
improved ultraviolet-light photodetectors and excellent field emitters,” J. Mater. Chem., vol. 21, no. 18, p. 6525, 2011.
71 [16] A. Hussain, R. Gruehn, and C. H. Rüscher, “Crystal growth of alkali metal tungsten brozes MxWO3 (M = K, Rb, Cs), and their optical properties,” J. Alloys Compd., vol. 246, no. 1–2, pp. 51–61, Jan. 1997.
[17] S. Y. Lee, J. Y. Kim, J. Y. Lee, H. J. Song, S. Lee, and K. H. Choi, “Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer,” pp. 1–8, 2014.
[18] D. H. Piva et al., “Facile synthesis of WOx/ZrO2 catalysts using WO3·H2O precipitate as synthetic precursor of active tungsten species,” Mater. Today Chem., vol. 18, 2020.
[19] N. L. Pham, T. L. A. Luu, H. L. Nguyen, and C. T. Nguyen, “Effects of acidity on the formation and adsorption activity of tungsten oxide nanostructures prepared via the acid precipitation method,” Mater. Chem. Phys., vol. 272, no. March, p. 125014, 2021.
[20] C. Gómez-Solís, D. Sánchez-Martínez, I. Juárez-Ramírez, A. Martínez-de la Cruz, and L. M. Torres-Martínez, “Facile synthesis of m-WO3 powders via precipitation in ethanol solution and evaluation of their photocatalytic activities,” J. Photochem. Photobiol. A Chem., vol. 262, pp. 28–33, Jun. 2013. [21] A. V. Nikam, B. L. V. Prasad, and A. A. Kulkarni, “Wet chemical synthesis
of metal oxide nanoparticles: A review,” CrystEngComm, vol. 20, no. 35, pp. 5091–5107, 2018.
[22] Y. Wang et al., “Simultaneous Synthesis of WO3−x Quantum Dots and Bundle- Like Nanowires Using a One-Pot Template-Free Solvothermal Strategy and Their Versatile Applications,” Small, vol. 13, no. 13, pp. 1–12, 2017.
[23] Y. Li, Z. Tang, J. Zhang, and Z. Zhang, “Enhanced photocatalytic performance of tungsten oxide through tuning exposed facets and introducing oxygen vacancies,” J. Alloys Compd., vol. 708, pp. 358–366, Jun. 2017.
[24] K. Wenderich, J. Noack, A. Kärgel, A. Trunschke, and G. Mul, “Effect of Temperature and pH on Phase Transformations in Citric Acid Mediated Hydrothermal Growth of Tungsten Oxide,” Eur. J. Inorg. Chem., vol. 2018, no. 7, pp. 917–923, 2018.
[25] C.-M. Wu, S. Naseem, M.-H. Chou, J.-H. Wang, and Y.-Q. Jian, “Recent Advances in Tungsten-Oxide-Based Materials and Their Applications,”
Front. Mater., vol. 6, no. March, pp. 1–17, Mar. 2019.
[26] B. Bhuyan, B. Paul, S. S. Dhar, and S. Vadivel, “Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue,” Mater. Chem. Phys., 2017.
[27] G. Xi et al., “Ultrathin W18O49 Nanowires with Diameters below 1 nm :
Synthesis , Near-Infrared Absorption , Photoluminescence , and Photochemical Reduction of Carbon Dioxide ** Angewandte,” no. 51102220, pp. 2445–2449, 2012.
[28] H. Bai et al., “W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light,” J. Mater. Chem. A, vol. 1, no. 20, p. 6125, 2013.
72
[29] S. Yoon, E. Kang, J. K. Kim, C. W. Lee, and J. Lee, “Development of high- performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity w,” Chem. Commun., pp. 1021–1023, 2011.
[30] Y. Tian et al., “Synergy of W18O49 and Polyaniline for Smart Supercapacitor Electrode Integrated with Energy Level Indicating Functionality,” Nano Lett., vol. 14, pp. 2150–2156, 2014.
[31] J. Lee et al., “Simple fabrication of fl exible electrodes with high metal-oxide
content : electrospun reduced tungsten oxide / carbon nano fibers for lithium ion battery applications †,” Nanoscale, vol. 6, pp. 10147–10155, 2014.
[32] S. Sharma and M. Madou, “Review article: A new approach to gas sensing with nanotechnology,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 370, no. 1967, pp. 2448–2473, 2012.
[33] C. C. Mardare and A. W. Hassel, “Review on the Versatility of Tungsten Oxide Coatings,” Phys. Status Solidi Appl. Mater. Sci., vol. 216, no. 12, pp. 1–16, 2019.
[34] S. Nasir, M. Hussein, Z. Zainal, and N. Yusof, “Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications,” Materials (Basel)., vol. 11, no. 2, p. 295, Feb. 2018. [35] O. S. Kroto HW, Heath JR, “Buckminsterfullerene,” Nature, vol. 318:162–3, 1985. [36] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp.
56–58, 1991.
[37] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993.
[38] S. Iijima, “Carbon nanotubes: Past, present, and future,” Phys. B Condens. Matter, vol. 323, no. 1–4, pp. 1–5, 2002.
[39] L. Boumia, M. Zidour, A. Benzair, and A. Tounsi, “A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes,”
Phys. E Low-Dimensional Syst. Nanostructures, vol. 59, pp. 186–191, 2014. [40] M. Meo and M. Rossi, “Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling,”
Compos. Sci. Technol., vol. 66, no. 11–12, pp. 1597–1605, 2006.
[41] T. Yamabe, “Recent development of carbon nanotube,” Synth. Met., vol. 70, no. 1–3, pp. 1511–1518, 1995.
[42] F.-L. Jin and S.-J. Park, “Recent Advances in Carbon-Nanotube-Based Epoxy Composites,” Carbon Lett., vol. 14, no. 1, pp. 1–13, 2013.
[43] K. S. Ibrahim, “Carbon nanotubes-properties and applications: a review,”
Carbon Lett., vol. 14, no. 3, pp. 131–144, Jul. 2013.
[44] A. Kulkarni and R. R. Bhosale, “Carbon Nanotubes : An Impending Carter
in Therapeutics Carbon Nanotubes : An Impending Carter in Therapeutics
.,” no. January, 2014.
[45] D. Akiladevi and S. Basak, “Carbon Nanotubes ( CNTs ) Production , Characterisation and Its Applications Carbon Nanotubes ( CNTs ) Production , Characterisation and Its Applications,” Int. J. Adv. Pharm. Sci.,
73 vol. 1, no. February, pp. 187–195, 2010.
[46] P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” pp. 19–22, 2001. [47] K. Saeed and S.-Y. Park, “Preparation of multiwalled carbon
nanotube/nylon-6 nanocomposites by in situ polymerization,” J. Appl. Polym. Sci., vol. 106, no. 6, pp. 3729–3735, Dec. 2007.
[48] X. Zhang, Q. Meng, X. Wang, and S. Bai, “Poly(adipic acid-hexamethylene diamine)-functionalized multi-walled carbon nanotube nanocomposites,” J. Mater. Sci., vol. 46, no. 4, pp. 923–930, Feb. 2011.
[49] R. H. Baughman, “Carbon Nanotubes--the Route Toward Applications,”
Science (80-. )., vol. 297, no. 5582, pp. 787–792, Aug. 2002.
[50] C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes electrodes,”
Appl. Phys. Lett, vol. 70, p. 1480, 1997.
[51] C. L. Cheung and C. M. Lieber, “Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology,” Nature, vol. 394, no. July, pp. 52–55, 1998.
[52] J. Kim and B. G. Min, “Functionalization of Multi-walled Carbon Nanotube by Treatment with Dry Ozone Gas for the Enhanced Dispersion and Adhesion in Polymeric Composites,” vol. 11, no. 4, pp. 298–303, 2010. [53] H. Wang, “Current Opinion in Colloid & Interface Science Dispersing
carbon nanotubes using surfactants,” Curr. Opin. Colloid Interface Sci., vol. 14, no. 5, pp. 364–371, 2009.
[54] V. K. Gupta, “Synthesis of Carbon Nanotube-Metal Oxides Composites ;
Adsorption,” in Carbon nanotubes- From research to applications, 2006. [55] Y. Qiu, G. L. Xu, Q. Kuang, S. G. Sun, and S. Yang, “Hierarchical WO3 flowers
comprising porous single-crystalline nanoplates show enhanced lithium storage and photocatalysis,” Nano Res., vol. 5, no. 11, pp. 826–832, 2012.
[56] H. G. Choi, Y. H. Jung, and D. K. Kim, “Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet,” J. Am. Ceram. Soc., vol. 88, no. 6, pp. 1684–1686, 2005.
[57] Z. G. Zhao and M. Miyauchi, “Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts,” Angew. Chemie - Int. Ed., vol. 47, no. 37, pp. 7051–7055, 2008.
[58] D. P. Depuccio, P. Botella, B. O’Rourke, and C. C. Landry, “Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: Adsorption and photocatalytic studies,” ACS Appl. Mater. Interfaces, vol. 7, no. 3, pp. 1987–1996, 2015.
[59] V. Dutta et al., “Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications,” J. Environ. Chem. Eng., vol. 8, no. 6, p. 104505, 2020.
[60] J. Lu, Y. Wang, F. Liu, L. Zhang, and S. Chai, “Applied Surface Science Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances,” Appl. Surf. Sci., vol. 393, pp. 180–190, 2017.
74
[61] Y. Tu, T. Utsunomiya, S. Kokufu, M. Soga, T. Ichii, and H. Sugimura, “Immobilization of Reduced Graphene Oxide on Hydrogen-Terminated Silicon Substrate as a Transparent Conductive Protector,” Langmuir, vol. 33, no. 41, pp. 10765–10771, 2017.
[62] J. Ke, H. Zhou, J. Liu, Z. Zhang, X. Duan, and S. Wang, “Enhanced light- driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets,” J. Colloid Interface Sci., vol. 555, pp. 413–422, 2019.
[63] L. Tian, L. Ye, J. Liu, and L. Zan, “Solvothermal synthesis of CNTs-WO3
hybrid nanostructures with high photocatalytic activity under visible light,”
Catal. Commun., vol. 17, pp. 99–103, 2012.
[64] M. Dinari, M. M. Momeni, and M. Ahangarpour, “Efficient degradation of methylene blue dye over tungsten trioxide/multi-walled carbon nanotube system as a novel photocatalyst,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 10, 2016.
[65] C. Wang, A. Li, J. Xu, J. Wen, H. Zhang, and L. Zhang, “Preparation of WO3/CNT catalysts in presence of ionic liquid [C16mim]Cl and catalytic efficiency in oxidative desulfurization,” J. Chem. Technol. Biotechnol., vol. 94, no. 10, pp. 3403–3412, 2019.
[66] S.-K. Lee, H. Kim, S. Bang, S.-T. Myung, and Y.-K. Sun, “WO3
Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries,” Molecules, vol. 26, no. 2, p. 377, 2021.
[67] P. M. Kadam, N. L. Tarwal, S. S. Mali, H. P. Deshmukh, and P. S. Patil, “Enhanced electrochromic performance of f-MWCNT-WO3 composite,”
Electrochim. Acta, vol. 58, no. 1, pp. 556–561, 2011.
[68] A. A. Isari, M. Mehregan, S. Mehregan, F. Hayati, R. Rezaei Kalantary, and B. Kakavandi, “Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: A novel hybrid system,” J. Hazard. Mater., vol. 390, no. January, p. 122050, 2020.
[69] R. Kecili and C. M. Hussain, “Mechanism of Adsorption on Nanomaterials,” in Nanomaterials in Chromatography, Elsevier, 2018, pp. 89–115.
[70] A. Da̧browski, “Adsorption - From theory to practice,” Adv. Colloid Interface Sci., vol. 93, no. 1–3, pp. 135–224, Oct. 2001.
[71] N. Pan, D. Guan, T. He, and R. Wang, “Removal of Th4+ ions from aqueous solutions by graphene oxide,” 2013.
[72] T. Tene, G. T. Usca, M. Guevara, R. Molina, and F. Veltri, “Toward Large-
Scale Production of Oxidized Graphene Toward Large ‐ Scale Production of
Oxidized Graphene,” no. February, 2020.
[73] A. Y. Lee et al., “Raman study of D* band in graphene oxide and its correlation with reduction,” Appl. Surf. Sci., vol. 536, no. July 2020, p. 147990, 2021.
[74] J. Besnardiere et al., “Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3,” Nat. Commun., vol. 10, p. 327, 2019.
75 [75] H. S. Nguyen, T. L. A. Luu, H. T. Bui, T. T. Nguyen, H. L. Nguyen, and C. T. Nguyen, “Facile synthesis of in situ CNT/WO3∙H2O nanoplate composites for adsorption and photocatalytic applications under visible light irradiation,” Semicond. Sci. Technol., vol. 36, no. 9, p. 095010, Sep. 2021. [76] F. Zheng, M. Zhang, and M. Guo, “Controllable preparation of WO3 nanorod
arrays by hydrothermal method,” Thin Solid Films, vol. 534, pp. 45–53, 2013. [77] M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, “Infrared and
Raman study of WO3 tungsten trioxides and WO3.xH2O tungsten trioxide tydrates,” J. Solid State Chem., vol. 67, no. 2, pp. 235–247, Apr. 1987.
[78] B. Song et al., “Two-step hydrothermally synthesized carbon nanodots/WO3
photocatalysts with enhanced photocatalytic performance,” Dalt. Trans., vol. 46, no. 45, pp. 15769–15777, 2017.
[79] I. Székely, M. Baia, K. Magyari, B. Boga, and Z. Pap, “The effect of the pH adjustment upon the WO3-WO3·0.33H2O-TiO2 ternary composite systems’ photocatalytic activity,” Appl. Surf. Sci., vol. 490, no. February, pp. 469– 480, 2019.
[80] V. T. Nguyen et al., “Tungsten Oxide Nanoplates: Facile Synthesis, Controllable Oxygen Deficiency and Photocatalytic Activity,” Commun. Phys., vol. 30, no. 4, p. 319, Oct. 2020.
[81] N. H. Son et al., “Functionalization-Mediated Preparation via Acid Precipitation and Photocatalytic Activity of In Situ Ag2WO4 @WO3 .H2O Nanoplates,” ECS J. Solid State Sci. Technol., vol. 10, no. 5, p. 054009, May 2021.
[82] X. Hu, P. Xu, H. Gong, and G. Yin, “Synthesis and characterization of WO3/graphene nanocomposites for enhanced photocatalytic activities by one-step in-situ hydrothermal reaction,” Materials (Basel)., vol. 11, no. 1, 2018.
[83] L. Gan, L. Xu, S. Shang, X. Zhou, and L. Meng, “Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism,” Ceram. Int., vol. 42, no. 14, pp. 15235–15241, 2016.
[84] R. J. Carmona, L. F. Velasco, E. Laurenti, V. Maurino, and C. O. Ania, “Carbon materials as additives to WO3 for an enhanced conversion of simulated solar light,” Front. Mater., vol. 3, no. February, pp. 1–11, 2016. [85] H. Zhuang, Z. Cai, W. Xu, M. Huang, and X. Liu, “In situ construction of
WO3/g-C3N4 composite photocatalyst with 2D-2D heterostructure for enhanced visible light photocatalytic performance,” New J. Chem., vol. 43, no. 44, pp. 17416–17422, 2019.
[86] Y. Yin, C. Lan, H. Guo, and C. Li, “Reactive Sputter Deposition of WO3
/Ag/WO3 Film for Indium Tin Oxide (ITO)-Free Electrochromic Devices,”
ACS Appl. Mater. Interfaces, vol. 8, no. 6, pp. 3861–3867, Feb. 2016.
[87] J. Bae et al., “Optimized low-temperature fabrication of WO3 films for electrochromic devices,” J. Phys. D. Appl. Phys., vol. 50, no. 46, pp. 0–19, 2017. [88] Y. Yue et al., “High-performance complementary electrochromic device
based on WO3·0.33H2O/PEDOT and prussian blue electrodes,” J. Phys. Chem. Solids, vol. 110, no. January, pp. 284–289, Nov. 2017.