Kỹ thuật điều khiển giảm can nhiễu tăng cường giữa các tế bào

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu giải pháp chống can nhiễu giữa DVB t và LTE a tại băng tần 700 mhz (Trang 39 - 42)

(enhanced Inter-Cell Interference Coordination)

Kỹ thuật điều khiển giảm can nhiễu tăng cường giữa các tế bào được sử dụng trong hệ thống được gọi là mạng phức hợp (Heterogeneous network) giúp giải quyết hiện tượng nghẽn mạng. Trong mạng này, các trạm thu phát công suất thấp sẽ tạo ra các cell nhỏ (small cell) nằm chồng lên mạng lưới các cell lớn (macro cell) do các trạm thu phát thông thường có công suất lớn tạo ra. Các trạm thu phát nhỏ với nhiều mức kích cỡ (còn được gọi bằng các tên metro-, micro-, pico-, hay femtocell) để tăng mức tải dữ liệu trong các vùng nóng (hots pot) như vùng đô thị đông đúc. Những bộ thu phát này có kích thước nhỏ gọn, giá thành rẻ, không cồng kềnh và lắp đặt thì dễ dàng hơn. Nhưng khi các nhà mạng đặt ngày càng nhiều trạm thu phát vào cùng một khu vực, họ sẽ phải tìm cách để giảm thiểu can nhiễu khó tránh khỏi giữa chúng.

Giao thức eICIC của LTE-A được xây dựng dựa trên kỹ thuật điều khiển giảm can nhiễu giữa các tế bào ICIC (Inter-Cell Interference Coordination) của LTE vốn để giúp giảm can nhiễu giữa hai cell lớn (macro cell) trong mạng đồng nhất (Homogeneous network).

Hình 2.7 Mạng đồng nhất và mạng phức hợp

Sử dụng eICIC, một trạm thu phát có thể giảm công suất phát ở những tần số và khoảng thời gian cụ thể trong khi một trạm kế bên sử dụng những tài nguyên đó để liên lạc với các máy đang ở rìa vùng phủ sóng của nó. Tuy nhiên phương pháp chia sẻ phổ này chỉ có tác dụng với các luồng dữ liệu. Để liên lạc được với một thiết bị di động và giúp nó hiểu được luồng dữ liệu thì trạm phát phải truyền đi các tín hiệu điều khiển trong đó có chứa các thông tin về quản lý như lịch trình hoạt động, các yêu cầu phát lại, và các chỉ dẫn để giải mã. Do thiết bị di động chờ các thông điệp này tới trên các tần số và thời điểm cụ thể nên mô ̣t trạm phát không thể thoải mái cho các trạm bên cạnh dùng những tài nguyên đó mỗi khi chúng cần. LTE giải quyết vấn đề này bằng cách phát các tín hiệu điều khiển có thể chịu được lượng can nhiễu tương đối cao.

Tuy vậy, sự xuất hiện của các cell nhỏ lại làm cho mọi việc phức tạp hơn. Ví dụ khi một số thiết bị di động muốn thiết lập kết nối tới một cell nhỏ đang nằm trong một cell lớn, thì các tín hiệu điều khiển từ cell lớn có thể lấn át những tín hiệu này từ cell nhỏ. Giao thức eICIC xử lý tình huống này theo một trong hai cách sau.

Nếu hệ thống mạng có sử dụng kỹ thuâ ̣t cộng gộp sóng mang để ghép hai hay nhiều kênh tần số thì cell lớn và cell nhỏ sẽ chỉ việc sử dụng các kênh tách biệt để gửi các tín hiệu điều khiển, kỹ thuật này còn được gọi là lập lịch chéo sóng mang CCS (cross-carrier scheduling). Lập lịch chéo sóng mang sử dụng kênh điều khiển vật lý đường xuống PDCCH (Physical Downlink Control Channel) của một trong các sóng mang thành phần trong cell lớn và cell nhỏ mang tín hiệu điều khiển đường xống DCI (Downlink Control Information) để sắp xếp người dùng trên kênh chia sẻ vật lý đường xống PDSCH_kênh mang dữ liệu (Physical Downlink Shared Channel). PDCCH có thể được truyền đi với công suất cao hơn so với các kênh lưu lượng. Do đó, sử dụng các sóng mang khác nhau cho PDCCH trong các cell lớn và cell nhỏ làm giảm nguy cơ can nhiễu PDCCH.

Trong hình dưới đây, là một ví dụ điển hình đối với kết hợp sóng mang với lập lịch chéo sóng mang 2 thành phần sóng mang được dùng, cả hai có độ rộng 6 khối tài nguyên vật lý PRB (Physical Resource Block). Sóng mang thành phần mầu xanh blue từ macro-eBN được dùng như sóng mang thành phần chính PCC (Primary Component Carrier), sóng mang thành phần màu xanh green được dùng như sóng mang thành phần thứ hai SCC (Primary Component Carrier). Sóng mang thành phần chính PCC với kênh điều khiển vật lý đường xuống có công suất phát cao hơn sóng mang thành phần thứ 2 SCC do đó cell phục vụ chính lớn hơn cell phuc vụ thứ 2. Trạm cơ sở BS trong small cell dùng sóng mang màu xanh green như là sóng mang thành phần chính PCC còn sóng mang màu xanh blue như sóng mang thành phần thứ 2 SCC, cả 2 được phát với cùng công suất nhưng sự mở rộng cell CRE được dùng cho sóng mang thành phần chính màu xanh green PCC. Khu vực màu đỏ được chỉ định dùng cho kênh điều khiển vật lý đường xuống PDCCH mang thông tin điều khiển đường xuống DCI.

Hình 2.9 Lập lịch chéo sóng mang trong EICIC

Đối với các mạng chỉ sử dụng một kênh tần số, eICIC có một giải pháp khác. Đó là việc cell lớn và cell nhỏ sử dụng cùng tần số nhưng trong các khoảng thời gian khác nhau bằng cách sử dụng khung con gần như trống ABS (Almost Blank Subframe). Khung con gần như trống là khung con không mang dữ liệu. Trong cell lớn và cell nhỏ, đặc biệt người dùng vùng biên cell nhỏ có thể dùng chung tần số mà không gây can nhiễu lẫn nhau bằng cách sử dụng khung ABS trong khoảng thời gian khác nhau để truyền cả tín hiệu điều khiển và dữ liệu.

Hình 2.10 Sử dụng ABS trong eICIC

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu giải pháp chống can nhiễu giữa DVB t và LTE a tại băng tần 700 mhz (Trang 39 - 42)

Tải bản đầy đủ (PDF)

(80 trang)