3- Cắt dập
4.1- Khái niệm về xoắn
- Định nghĩa: Một thanh được gọi là xoắn thuần túy khi ngoại lực tác dụng là các ngẫu lực nằm trong mặt cắt của thanh (thường là mặt cắt có tiết diện tròn).
Chẳng hạn trục truyền AB chịu xoắn dưới tác dụng của các mẫu lực có mô men m1, m2, m3 và m4 (hình 2.11-a).
Hình 2.11-a
Trục nhận và truyền năng lượng nhờ các puli hoặc các bánh răng gắn trên trục. Trên những puli hoặc bánh răng phát sinh các ngẫu lực do các lực vòng của các bộ phận truyền động gây nên. Ta có thể xác định các mô men của các ngẫu lực đó dựa vào công suất mà puli hoặc bánh răng truyền đi hoặc nhận được.
7162 (Nm)
n N
m (2 – 9) N là công suất tính bằng mã lực
n là số vòng quay trong 1 phút của trục. Hoặc 9736 (Nm)
n N
m (2 – 10)
Trong đó: công suất N tính bằng KW, n là số vòng quay của trục trong 1 phút. - Nội lực:
Nội lực trong thanh xoắn nằm trên mặt cắt của thanh, ký hiệu Mx.
Muốn xác định vị trí số của ngẫu lực mô men xoắn Mx ta dùng phương pháp mặt cắt. Tùy theo vị trí từng mặt cắt ta được một trị số Mx tương ứng.
Ta biểu diễn trị số Mx của các mặt cắt trên trục bằng biểu đồ gọi là biểu đồ mô men xoắn.
*Ví dụ 4-1:
Vẽ biểu đồ mô men xoắn của trục chịu xoắn trên (hình 2.11-a). Cho biết: Pu ly 3 truyền cho trục một công suất N3 = 150 mã lực.
Pu ly 1 nhận công suất N1 = 50 mã lực, Pu ly 2 nhận công suất N2 = 30 mã lực,
Pu ly 4 nhận công suất N4 = 70 mã lực để truyền đến nguồn tiêu thụ. Trục quay đều với vận tốc n = 150 vòng/phút.
m2
m3 m4
m1
m2 m3 m4
Bài giải
Các mô men tác dụng lên các pu ly :
N n N m 2387 150 50 7162 7162 1 1 N n N m 1432 150 30 7162 7162 2 2 N n N m 7162 150 150 7162 7162 3 3 N n N m 3312 150 70 7162 7162 4 4
Để vẽ biểu đồ mô men nội lực, ta dùng các mặt căt chia trục thành các đoạn như
(hình 2.11-b).
Áp dụng các phương trình cân bằng tĩnh học và quy ước nhìn từ phải sang nếu m quay ngược chiều kim đồng hồ mang giá trị dương (+), ta có:
MXI = + m1 = +2387 Nm
MXII = + (m1 + m2) = + 3819 Nm MXIII = - (m1 + m2 – m3) = -3342 Nm
Hình 2.11-b