Các bài toán liên quan

Một phần của tài liệu Chuyên đề thuật toán đồ thị trong lập trình căn bản (Trang 65 - 66)

Một bài toán liên quan là cây bao trùm nhỏ nhất k (k-MST), là cây bao trùm một tập con gồm k đỉnh trong đồ thị với trọng số nhỏ nhất.

Tập hợp kcây bao trùm nhỏ nhất là một tập hợp gồm k cây bao trùm sao cho không có cây bao trùm nào bên ngoài tập có trọng số nhỏ hơn. (Chú ý là bài toán này không liên quan đến bài toán cây bao trùm nhỏ nhất k).

Cây bao trùm nhỏ nhất trong không gian Euclide là cây bao trùm nhỏ nhất của đồ thị mà trọng số là khoảng cách giữa các điểm trong không gian Euclide.

Cây bao trùm nhỏ nhất trong tọa độ thẳng là cây bao trùm nhỏ nhất của đồ thị mà trọng số là khoảng cách thẳng (khoảng cách ) giữa các điểm trong không gian.

Trong tính toán phân tán, khi mà mỗi đỉnh tương ứng với một máy tính chỉ biết đến những liên kết của chính nó, ta có thể xem xét bài toán tìm cây bao trùm nhỏ nhất một cách phân tán. Định nghĩa về mặt toán học của bài toán không thay đổi nhưng lời giải phải thay đổi cho phù hợp với mô hình tính toán phân tán.

Cây bao trùm nhỏ nhất 63 Cây bao trùm nhỏ nhất với khả năng thông qua là cây với một đỉnh được đánh dấu nguồn và mỗi cây con nối với đỉnh nguồn có không quá c nút. c được gọi là khả năng thông qua của cây.

Cây bao trùm với giới hạn bậc là cây bao trùm nhỏ nhất thỏa mãn điều kiện mỗi đỉnh được nối với không quá d đỉnh khác, với một số d cho trước. Trường hợp d=2 là một biến thể của bài toán người bán hàng và nó cũng là NP-khó. Vì vậy trong trường hợp tổng quát, cây bao trùm nhỏ nhất với giới hạn bậc là NP-khó.

Trong đồ thị có hướng, bài toán cây bao trùm nhỏ nhất có gốc có thể giải trong thời gian bậc hai bằng thuật toán Chu-Liu/Edmonds.

Cây bao trùm lớn nhất là cây bao trùm có tổng trọng số lớn hơn hoặc bằng tổng trọng số bất kì cây bao trùm nào. Bài toán này có thể được giải bằng cách nhân các trọng số với -1 và giải bài toán cây bao trùm nhỏ nhất trên đồ thị mới. Đường đi trên cây bao trùm lớn nhất chính là đường đi rộng nhất giữa hai đầu đường đi: trong tất cả các đường đi giữa hai đỉnh này, nó là đường đi có trọng số nhỏ nhất trên đường là lớn nhất.

Bài toán MST động yêu cầu xử lý các thao tác thay đổi cạnh hoặc đỉnh của đồ thị và có thể nhanh chóng tính cây bao trùm nhỏ nhất tại mọi thời điểm.

Tham khảo

Một phần của tài liệu Chuyên đề thuật toán đồ thị trong lập trình căn bản (Trang 65 - 66)

Tải bản đầy đủ (PDF)

(127 trang)