Nghiên cứu khả năng giải chiết Pd(II) bằng hỗn hợp của

Một phần của tài liệu NGHIÊN CỨU KHẢ NĂNG CHIẾT PALAĐI(II) BẰNG TÁC NHÂN PDA VÀ MỘT SỐ AMIN (Trang 43 - 70)

1. 6 Xu hướng nghiên cứu và ứng dụng trong tương lai

3.1.4Nghiên cứu khả năng giải chiết Pd(II) bằng hỗn hợp của

Trong thí nghiệm này, chúng tôi tiến hành thực nghiệm với các điều kiện sau:

- Pha hữu cơ: dung môi là 1,2-dicloetan có PDA 50mM

- Dung dịch giải chiết: là hỗn hợp của HNO3 và EDTA (được chỉ ra trong bảng 9)

Kết quả thực nghiệm thu được được trình bày trong bảng 9. Từ đó, chúng tôi có một số nhận xét như sau:

- Khả năng chiết của dung dịch Pd(II) với tác nhân PDA tại nồng độ axit HNO3 2M là rất tốt, với hiệu xuất đạt được (>99%).

- Nồng độ axit ở trạng thái cân bằng của pha nước sau giải chiết quá nhỏ nên không thể đo được. Bên cạnh đó, dung dịch này cũng có hiện tượng kết tủa trong pha nước. Để sau một ngày, kết tủa này tan hoàn toàn. Sau đó, ta lấy dung dịch này đem đi đo lại nồng độ Pd(II) và nồng độ axit thì thấy kết quả giống như lần đầu.

- Khả năng giải chiết của dung dịch EDTA rất thấp (<60%). Nếu chúng ta so sánh với các mẫu được giải chiết bằng dung dịch thiourea có các điều kiện tương đương, như mẫu 24, thì dùng dung dịch EDTA để giải chiết là không khả quan.

- Khả năng giải chiết của dung dịch thiourea rất tốt. Hiệu suất đạt được rất cao (S > 98%). Như vậy, khả năng tạo phức với kim loại của thiourea tốt hơn so với EDTA.

3.1.5 - Ảnh hưởng của tác nhân chiết PDA tới quá trình chiết Pd(II)

Dựa vào các kết quả được trình bày trong đồ thị ở hình 11 và 12, chúng tôi nhận thấy nồng độ tác nhân PDA ảnh hưởng rất lớn đến quá trình chiết Pd(II).

- Nồng độ tác nhân chiết PDA càng cao, khả năng chiết Pd(II) càng tốt. - Với nồng độ HNO3 ≥ 2M thì hiệu suất (E) của quá trình chiết Pd(II) đạt được trên 99%. Trong trường hợp dung dịch FEED sử dụng hỗn hợp của

(HNO3 + NaNO3) thì hiệu quả chiết lại không cao so với khi không có mặt NaNO3. 40 60 80 100 120 0 1 2 3 4 5 [HNO3] (M) E(% ) PDA 50mM PDA 100mM 70 90 110 0 1 2 3 4 [HNO3] (M) S(%) 5 PDA 50mM PDA 100mM

Hình 11: Sự phụ thuộc khả năng chiết của Pd(II) bằng dung môi 1,2-dicloetan

chứa PDA vào axit nitric

Hình 12: Sự phụ thuộc khả năng giải chiết của Pd(II) với dung môi 1,2- dicloetan chứa PDA bằng dung dịch

Thiourea

- Khả năng giải chiết của dung dịch thiourea là rất tốt (> 98%). Nồng độ axit trong dung dịch FEED ban đầu càng cao thì khả năng giải chiết càng tốt. Nếu sử dụng dung dịch EDTA để giải chiết thì hiệu quả không cao so với khi dùng thiourea.

3.1.6 - Ảnh hưởng của nồng độ axit HNO3 tới quá trình chiết Pd(II) bằng tác nhân PDA

Dựa vào các kết quả nhận được, ảnh hưởng của nồng độ axit tới khả năng chiết của Pd(II) được trình bày trong đồ thị ở hình 13. Tương tự như với tác nhân PDA, nồng độ axit HNO3 trong dung dịch FEED ban đầu càng cao thì khả năng chiết và giải chiết Pd(II) càng lớn. Với [HNO3] ≥ 2M thì hiệu suất của quá trình chiết và giải chiết lớn hơn 98%.

-1 0 1 2 3 4 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 Log[H+] LogD PDA 50mM PDA 100mM

Hình 13: Ảnh hưởng của nồng độ axit HNO3 tới khả năng chiết Pd(II) bằng dung môi 1,2-dicloetan chứa PDA

Nhn xét:

Với kết quả thu được, chúng tôi nhận thấy khả năng ứng dụng tác nhân chiết N,N-dibutyl-N,N-diphenyl-2,6-pyridine dicarboxyamide (hay còn gọi là DBuDPhPDA hoặc PDA) để chiết tách paladi(II) trong môi trường axit nitric bằng dung môi 1,2-dicloetan có hiệu quả rất cao. Bên cạnh đó, dung dịch thiourea được sử dụng để giải chiết Pd(II) có hiệu quả cao.

Bng 6: Kết quả thực nghiệm của quá trình chiết và giải chiết Pd(II) bằng dung môi 1,2-dicloetan chứa PDA

50mM và giải chiết bằng dung dịch thiourea.

Dung dịch FEED Chiết Giải chiết

STT PDA (mM) [Pd]bđ (ppm) [HNO3] (M) [Pd]nc [Pd]hc [H +]nc [Pd]nc [Pd]hc [H+]nc E (%) DPd LogD Log[H+] S (%) 1 50 10 0.01 1.179 8.821 0.021 7.548 1.273 0.070 88.210 7.482 0.874 -2.000 85.572 2 50 10 0.05 1.002 8.998 0.086 8.664 0.334 0.150 89.980 8.980 0.953 -1.301 96.285 3 50 10 0.1 0.875 9.125 0.124 9.118 0.007 0.027 91.253 10.432 1.018 -1.000 99.918 4 50 10 0.5 0.035 9.965 0.508 9.963 0.002 0.021 99.652 286.356 2.457 -0.301 99.979 5 50 10 1 0.000 10.000 0.746 9.990 0.010 0.033 100 - - 0.000 99.902 6 50 10 2 0.000 10.000 1.944 9.999 0.001 0.097 100 - - 0.301 99.987 7 50 10 3 0.000 10.000 2.918 10.000 0.000 0.107 100 - - 0.477 100 8 50 10 4 0.000 10.000 3.835 10.000 0.000 0.104 100 - - 0.602 100 9 50 10 5 0.000 10.000 4.849 10.000 0.000 0.117 100 - - 0.699 100 10 50 20 0.01 6.153 13.848 0.028 12.968 0.880 0.030 69.238 2.251 0.352 -2.000 93.645 11 50 20 0.05 4.875 15.125 0.053 14.237 0.889 0.020 75.626 3.103 0.492 -1.301 94.125 12 50 20 0.1 2.842 17.158 0.044 16.938 0.220 0.057 85.790 6.037 0.781 -1.000 98.720 13 50 20 0.5 1.333 18.667 0.539 18.495 0.172 0.074 93.335 14.004 1.146 -0.301 99.080 14 50 20 1 0.102 19.898 0.955 19.758 0.140 0.055 99.490 195.078 2.290 0.000 99.294 15 50 20 2 0.000 20.000 1.944 19.956 0.044 0.074 100 - - 0.301 99.780 16 50 20 3 0.000 20.000 2.912 19.991 0.009 0.074 100 - - 0.477 99.955 17 50 20 4 0.000 20.000 3.788 19.992 0.008 0.109 100 - - 0.602 99.960

19 50 40 0.01 24.222 15.778 0.034 14.125 1.653 0.025 39.445 0.651 -0.186 -2 89.520 20 50 40 0.05 21.155 18.845 0.046 18.205 0.640 0.020 47.113 0.891 -0.050 -1.301 96.602 21 50 40 0.1 11.742 28.258 0.093 27.977 0.280 0.074 70.644 2.406 0.381 -1 99.008 22 50 40 0.5 4.190 35.810 0.490 35.643 0.167 0.073 89.525 8.547 0.932 -0.301 99.533 23 50 40 1 1.896 38.104 0.951 38.012 0.092 0.069 95.260 20.097 1.303 0 99.759 24 50 40 2 0.417 39.583 1.917 39.542 0.041 0.079 98.956 94.827 1.977 0.301 99.897 25 50 40 3 0.141 39.859 2.909 39.794 0.066 0.073 99.648 283.455 2.452 0.477 99.835 26 50 40 4 0.009 39.991 3.835 39.944 0.047 0.118 99.977 4315.4 3.635 0.602 99.882 27 50 40 5 0.000 40.000 4.627 39.988 0.012 0.167 100 - - 0.699 99.969

Bng 7: Kết quả thực nghiệm của quá trình chiết và giải chiết Pd(II) 40ppm bằng dung môi 1,2-dicloetan chứa

PDA 100mM và giải chiết bằng dung dịch thiourea.

Dung dịch FEED Chiết Giải chiết (adsbygoogle = window.adsbygoogle || []).push({});

STT PDA (mM) [Pd]bđ (ppm) [HNO3] (M) [Pd]nc [Pd]hc [H+]nc [Pd]nc [Pd]hc [H+]nc E (%) DPd LogD Log[H +] bđ S (%) 28 100 38.91 0.01 4.448 34.460 0.008 26.034 8.426 0.001 88.568 7.747 0.889 -2 75.548 29 100 39.68 0.05 3.422 36.260 0.044 27.680 8.580 0.002 91.376 10.596 1.025 -1.301 76.337 30 100 40.01 0.1 2.114 37.893 0.083 30.816 7.077 0.003 94.715 17.923 1.253 -1 81.324 31 100 40.01 0.5 1.096 38.916 0.468 37.243 1.673 0.011 97.261 35.509 1.550 -0.301 95.701 32 100 40.27 1 0.005 40.268 0.921 39.931 0.336 0.011 99.987 7456.96 3.873 0 99.165

Bng 8: Kết quả thực nghiệm của quá trình chiết và giải chiết Pd(II) 40ppm bằng dung môi 1,2-dicloetan chứa

PDA 50mM với hỗn hợp của HNO3 và NaNO3 và giải chiết bằng dung dịch thiourea.

Dung dịch FEED Chiết Giải chiết

STT PDA (mM) [Pd]bđ (ppm) [HNO3] bđ (M) [NaNO3] bđ (M) [Pd]nc [Pd]hc [H +]nc [Pd]nc [Pd]hc [H+]nc E (%) DPd LogD Log[H +] bđ S (%) 35 50 36.41 0.01 0.09 13.842 22.570 0.002 20.958 1.612 0.001 61.985 1.631 0.212 -1 92.857 36 50 37.07 0.05 0.05 11.433 25.640 0.014 23.728 1.912 0.002 69.161 2.243 0.351 -1 92.544 21 50 40 0.1 - 11.742 28.258 0.093 27.977 0.280 0.074 70.644 2.406 0.381 -1 99.008

Bng 9: Kết quả thực nghiệm của quá trình giải chiết Pd(II) 40ppm bằng dung dịch của hỗn hợp của HNO3 và EDTA.

Dung dịch

FEED Giải chiEDTA ết bằng Chiết Giải chiết STT PDA (mM) [Pd]bđ (ppm) [H+]bđ (M) [EDTA] (M) [HNO3] (M) [Pd]nc [Pd]hc [H+]nc [Pd]nc [Pd]hc [H+]nc E (%) DPd LogD [HLog +]bđ S (%) 37 50 40.25 2 0.01 0.01 0.136 40.114 1.903 14.235 25.879 <0.001 99.66 294.9 2.470 0.301 35.488 38 50 40.25 2 0.05 0.01 0.006 40.244 1.872 14.785 25.459 <0.001 99.99 6707.3 3.827 0.301 36.738 39 50 40.25 2 0.1 0.01 0.283 39.967 1.892 19.765 20.202 <0.001 99.30 141.2 2.150 0.301 49.454 40 50 40.25 2 0.01 0.05 0.146 40.104 1.925 20.550 19.554 <0.001 99.64 274.6 2.439 0.301 51.243 41 50 40.25 2 0.05 0.05 1.252 38.998 1.837 22.910 16.088 <0.001 96.89 31.1 1.493 0.301 58.748

3.2 – Nghiên cứu khả năng chiết Pd(II) của tác nhân chiết là amin 3.2.1 – So sánh khả năng chiết Pd(II) của các tác nhân amin

Các amin được sử dụng trong nghiên cứu được thống kê trong bảng 4. Tương tự như các thí nghiệm đã được tiến hành ở phần trên, chúng tôi xem xét khả năng chiết của từng loại amin trong các dung môi khác nhau. Cả hai loại amin (TMEA và TOA) đều tan hoàn toàn trong 1,2-dicloetan, n-dodecan, 1-octanol và nitrobenzen.

Tuy nhiên, khi chiết thử nghiệm với dung dịch Pd(II) bằng dung môi n- dodecan và 1-octanol có chứa hai loại amin trên thì đều có hiện tượng tạo ra pha thứ ba sau quá trình chiết. Pha thứ ba này được mô tả trong hình 14 và 15. .

Hình 14: Hiện tượng tạo ra pha thứ ba của tác nhân TMEA, TOA trong

n-dodecan

Hình 15: Hiện tượng tạo ra pha thứ ba của tác nhân TMEA, TOA

trong 1-octanol

Chính vì lẽ đó, chúng tôi chỉ xem xét khả năng chiết của TMEA và TOA trong dung môi 1,2-dicloetan và nitrobenzen.

Chúng tôi xét sơ bộ khả năng chiết tại các điều kiện:

- Nồng độ trong dung dịch FEED ban đầu: Pd(II) 40ppm trong môi trường axit HNO3 0.1M .

- Giải chiết bằng dung dịch thiourea 0.1M hòa tan trong axit HNO3 0.01M.

Ở đây, chúng tôi đưa ra ma trận thực nghiệm như sau:

Tác nhân amin (100mM) Dung môi Tris[2-(2-methoxyethoxy)-

ethyl] amin (TMEA)

Tri-n-octyl amin (TOA)

1,2-dicloetan N1 N2

Nitrobenzen N3 N4

Với N1, N2, N3, N4: là ký hiệu mẫu amin trong từng loại dung môi khác nhau.

Kết quả thu được trong các điều kiện khác nhau được trình bày trong bảng 10. Từ đây, chúng tôi nhận thấy khả năng chiết và giải chiết Pd(II) bằng tác nhân TOA tốt hơn hẳn so với TMEA.

Trong hai amin trên, TOA là amin có tính phổ biến và mang tính thương mại cao. Do đó, để đánh giá cụ thể ảnh hưởng của nồng độ axit HNO3, nồng độ amin trong từng loại dung môi… tới quá trình chiết Pd(II), chúng tôi lựa chọn tác nhân Tri-n-octyl amin (TOA) làm đại diện của nhóm amin trong các thí nghiệm tiếp theo.

3.2.2 – Nghiên cứu khả năng chiết Pd(II) của tác nhân TOA.

3.2.2.1 - Chiết Pd(II) bằng dung môi 1,2-dicloetan chứa TOA 100mM (adsbygoogle = window.adsbygoogle || []).push({});

Tương tự như với các thí nghiệm về tác nhân chiết PDA trong 1,2- dicloetan, chúng tôi tiến hành nghiên cứu về khả năng chiết Pd(II) của tác nhân TOA 100mM trong dung môi 1,2-dicloetan trong môi trường axit HNO3 (0.01 → 4)M. Dung dịch giải chiết là thiourea.

- Trong quá trình tiến hành thực nghiệm, nhận thấy mẫu T1, T2 (với nồng độ HNO3 <0.05M) có hiện tượng kết tủa trắng trong pha nước sau chiết và sau giải chiết. Bởi vì muối của Pd(II) dễ bị thủy phân trong môi trường có pH thấp, vì vậy trong nghiên cứu phải lưu ý đến giá trị pH thấp để dung dịch đạt môi trường axit vừa đủ. Tuy nhiên, để sau khoảng một ngày, các kết tủa này tan hoàn toàn. Đo nồng độ Pd(II) và axit của pha nước tại thời điểm có hiện tượng kết tủa và sau khi kết tủa tan hoàn toàn, nhận thấy các giá trị thu được là không đổi. Do vậy, kết quả tính toán trong bảng số liệu đã được loại trừ hoàn toàn các sai số thực nghiệm về trạng thái của pha sau một thời gian.

- Với các giá trị đo nồng độ axit trong pha nước (< 0.001M), nhận thấy nồng độ axit đạt được trạng thái cân bằng (bão hòa) trong pha nước là rất nhỏ.

- Khả năng chiết và giải chiết Pd(II) bằng tác nhân TOA rất tốt khi nồng độ axit ban đầu HNO3 0.1M. Hiệu suất tương ứng của E, S là 100% và 98%. Nồng độ axit càng cao thì khả năng chiết và giải chiết càng kém.

0 20 40 60 80 100 120 0 1 2 3 4 [HNO3] (M) E(%) 0 20 40 60 80 100 120 0 1 2 3 [HNO3] (M) S(%) Hình 16: Sự phụ thuộc khả năng chiết của Pd(II) bằng dung môi 1,2-

dicloetan chứa TOA 100mM với nồng độ axit nitric

Hình 17: Sự phụ thuộc khả năng giải chiết của Pd(II) với dung môi

1,2-dicloetan chứa TOA 100mM bằng dung dịch thiourea

Khả năng chiết và giải chiết của TOA trong 1,2-dicloetan được trình bày trong đồ thị ở hình (16,17). Tại giá trị nồng độ HNO3 nằm trong khoảng từ 0.01 → 0.1M thì hiệu suất chiết và giải chiết càng lớn.

3.2.2.2 - Nghiên cứu chiết Pd(II) bằng dung môi 1,2-dicloetan chứa tác nhân TOA có nồng độ khác nhau

Trong thí nghiệm này, chúng tôi tiến hành trong các điều kiện sau: - Nồng độ TOA: (10, 20, 50, 100, 200, 500)mM.

- Nồng độ HNO3 trong FEED: 0.1M. Do kết quả thu được trong nghiên cứu trước đó, chúng tôi thấy tại nồng độ axit này, khả năng chiết của Pd(II) là rất tốt và không có hiện tượng kết tủa trong các pha sau chiết và giải chiết.

- Dung dịch giải chiết là thiourea.

Kết quả thực nghiệm được chỉ trong bảng 12.

Chúng tôi nhận thấy khi nồng độ tác nhân TOA càng lớn thì khả năng chiết và giải chiết Pd(II) càng cao. Ảnh hưởng của tác nhân TOA được trình bày trong đồ thị của hình (18,19,20).

0 20 40 60 80 100 120 0 100 200 300 400 500 [TOA] (mM) E(%) 20 40 60 80 100 120 -100 100 300 500 [TOA] (m M) S(% )

Hình 18: Sự phụ thuộc khả năng chiết của Pd(II) tại HNO3 0.1M bằng dung

môi 1,2-dicloetan chứa TOA với các nồng độ khác nhau

Hình 19: Sự phụ thuộc khả năng giải chiết của Pd(II) với dung môi 1,2- dicloetan chứa TOA bằng dung dịch

0 1 2 3 -2 -1 0 1 2 3 Log[TOA] LogD

Hình 20: Ảnh hưởng của nồng độ tác nhân TOA tới khả năng chiết Pd(II) trong dung môi 1,2-dicloetan tại nồng độ HNO3 0.1M

3.2.2.3 - Nghiên cứu chiết Pd(II) bằng dung môi nitrobenzen với nồng độ TOA 100mM

Giống như chiết Pd(II) 40ppm với dung môi là 1,2-dicloetan (trong phần 3.2.2.1 ), thí nghiệm này cũng được tiến hành tương tự. sau khi chiết và giải chiết, cũng có hiện tượng kết tủa trong pha nước ở mẫu T9 sau chiết và giải chiết.

Kết quả thực nghiệm được trình bày trong bảng 13.

Với kết quả thu được, nhận thấy khả năng chiết Pd(II) của TOA trong nitrobenzen rất tốt khi nồng độ HNO3≤ 0.1M, với hiệu suất (E) đạt được trên 98%. Ngoài ra, khả năng giải chiết của Pd(II) bằng thiourea trong hầu hết các mẫu trên đều có S > 90%.

40 60 80 100 0 1 2 3 4 [H N O3] (M ) E (% ) 90 94 98 0 2 4 [HNO3] (M) S(%) Hình 21: Sự phụ thuộc khả năng chiết của Pd(II) bằng dung môi nitrobenzen chứa TOA 100mM với

nồng độ axit

Hình 22: Sự phụ thuộc khả năng giải chiết của Pd(II) với dung môi

nitrobenzen chứa TOA 100mM bằng dung dịch thiourea -1 0 1 2 3 -2 -1 0 1 Log [H+] Log D

Hình 23: Ảnh hưởng của nồng độ axit HNO3 tới khả năng chiết Pd(II) bằng dung môi nitrobenzen chứa PDA 100mM (adsbygoogle = window.adsbygoogle || []).push({});

3.2.2.4 - Nghiên cứu chiết Pd(II) bằng dung môi nitrobenzen chứa tác nhân TOA có nồng độ khác nhau

Trong thí nghiệm này, chúng tôi tiến hành trong các điều kiện sau: - Nồng độ TOA: (10, 20, 50, 100, 200, 500)mM.

- Nồng độ HNO3 trong FEED là 0.1M : Theo các kết quả đã thu được (mẫu T17) tại nồng độ này, khả năng chiết Pd(II) là rất cao (E > 99%).

Kết quả thực nghiệm được đưa ra trong bảng 14. Từ đó, chúng tôi có một số nhận xét sau:

- Tại nồng độ HNO3 0.1M, nồng độ tác nhân TOA trong dung môi càng lớn thì khả năng chiết và giải chiết Pd(II) càng cao. Hiệu suất E của quá trình chiết > 99% khi [TOA] ≥ 200mM.

- Pha hữu cơ sau chiết và giải chiết của mẫu T21, T22 tạo kết tủa màu trắng trong pha hữu cơ. Sau 1 ngày kết tủa tan ra hoàn toàn.

Kết quả thực nghiệm được trình bày trên đồ thị hình (24,25,26). chỉ ra

Một phần của tài liệu NGHIÊN CỨU KHẢ NĂNG CHIẾT PALAĐI(II) BẰNG TÁC NHÂN PDA VÀ MỘT SỐ AMIN (Trang 43 - 70)