Vẽ các đường cong hình học
Trong kỹ thuật thường gặp các đường cong khác nhau. Sau đây là cách vẽ một số đường cong phẳng.
Các đường cong vẽ bằng compa
A. Vẽ ô van
Ô van là đường cong khép kín được tạo bởi bốn cung tròn từng đôi một đối xứng. Ô van có hai trục đối xứng vuông góc với nhau gọi là trục dài và trục ngắn của ô van. Khi vẽ người ta cho biết độ dài của hai trục đó.(Quan sát đoạn video hình 2.22)Ví dụ: Vẽ ô van biết trục dài AB và trục ngắn CD.Cách vẽ như sau:
– Vẽ cung tròn tâm O, bán kính OA cắt– OC kéo dài tại E; cung tròn tâm C, bán kính CE cắt AC tại F.– Vẽ trung trực của AF cắt OA tại O1, cắt OD tại O3.– Lấy O4 đối xứng với O3, O2 đối xứng với O1 qua O. Nối O3 với O1 và O2 , nối O4 với O1 và O2. Bốn tia này sẽ là giới hạn các cung tròn tâm O1, O2, O3, O4; tạo thành ô van.– Vẽ các cung tròn tâm O1, bán kính O1A; tâm O2, bán kính O2B; tâm O3 bán kính O3C; tâm O4 bán kính O4D ta được hình ô van cần dụng
a1_13Med_Prog
B. Đường xoáy ốc nhiều tâm
Đường xoắy ốc nhiều tâm là đường cong phẳng tạo bởi các cung tròn có bán kính khác nhau nối tiếp nhau.Khi vẽ người ta cho biết khoảng cách giữa các tâm.+ Vẽ đường xoáy ốc 2 tâm: (Quan sát đoạn video sau)
– Lấy O1 làm tâm, bán kính O1 – O2 vẽ cung O2– 1– Lấy O2 làm tâm, bán kính O2 – 1 vẽ cung 1–2– Lấy O1 làm tâm, bán kính O1 – 2 vẽ cung 2–3...
+ Vẽ đường xoáy ốc 3 tâm: (Quan sát đoạn video sau)
– Lấy O1 làm tâm, bán kính O1 – O3 vẽ cung O3. 1– Lấy O2 làm tâm, bán kính O2 – 1 vẽ cung 1–2– Lấy O3 làm tâm, bán kính O3.2 vẽ cung 2–3– Lấy O1 làm tâm, bán kính O1 – 3 vẽ cung 3 – 4
– Lấy O1 làm tâm, bán kính O1 – O2 vẽ cung O2–1– Lấy O4 làm tâm, bán kính O4 – 1 vẽ cung 1–2– Lấy O3 làm tâm bán kính O3.2 vẽ cung 2–3– Lấy O2 lâm tâm bán kính O2 – 3 vẽ cung 3 – 4...
xoaioc2tamMed_Prog
Vẽ các đường cong bằng thước cong
A. Elip
Elip là quỹ tích của điểm có tổng số khoảng cách đến hai điểm cố định F1 và F2 là một hằng số.
MF 1 + MF 2 = 2a
F1 và F2 gọi là tiêu điểm của elip (khoảng cách F1F2 < 2a), AB là trục dài của elip, CD là trục ngắn của elip (hình 2.26).Cách vẽ elip* Vẽ elip biết hai trục AB và CD (hình 2.27).
• Vẽ hai đường tròn tâm O, đường kính là AB và CD. • Chia 2 đường tròn đó ra làm 12 phần đều nhau
• Từ các điểm chia 1, 2, 3...và 1', 2', 3'... kẻ các đường thẳng song song với trục AB và CD.
Giao điểm của các đường 1 –1', 2 – 2' là các điểm nối thành Elip.
* Vẽ Elip khi biết 2 đường kính liên hợp EF và GH* Phương pháp hai chùm tia: (hình 2.28).
• Qua E và F kẻ MP và NQ // GH • Qua G và H kẻ PQ và MN // EF
• Chia các đoạn OH, PH, QH ra làm 3 phần bằng nhau bởi các điểm 1, 2, 3 và 1',2', 3' (H là điểm chung 3 và 3' của cả 3 đoạn này)
• Nối E với các điểm 1', 2' thuộc PH và với 1, 2 thuộc OH ; nối F với các điểm 1', 2' thuộc HQ và 1, 2 thuộc OH.
• Giao điểm của 2 tia tương ứng thuộc 2 chùm tia E và F xác định các điểm thuộc Elip.
* Phương pháp tám điểm (hình 2. 29).
• Qua A và B kẻ đường thẳng song song với CD, qua C và D kẻ hai đường thẳng song song với AB ta được hình bình hành EFGH.
• Dựng tam giác vuông cân EIC (vuông tại I).
• Qua K và L vẽ các đường thẳng song song với CD, các đường thẳng này cắt các đường chéo EG và HF tại 4 điểm 1,2, 3, 4 là những điểm thuộc elip cần xác định.
B. Parabôn
Parabôn là quỹ tích những điểm cách đều một điểm cố định và một đường thẳng cố định (hình 2.30).Ví dụ: điểm M thuộc parabôn ta có
Điểm cố định F gọi là tiêu điểm của parabôn, đường thẳng d cố định gọi là đường chuẩn của parabôn, đường thẳng Ox kẻ qua F vuông góc với trục d là trục của parabôn.Cách vẽ parabôn+ Vẽ parabôn khi biết tiêu điểm F và đường chuẩn.Cách vẽ hình 2.31
Trên trục đối xứng Ox lấy một điểm bất kì, ví dụ điểm 1.Quay cung tròn tâm F, bán kính r2 (bằng khoảng cách từ điểm O đến điểm1)cắt đường thẳng song song với d và đi qua 1 tại hai điểm. Hai điểm đó chính là hai điểm thuộc parabôn. Các điểm khác cũng xác định tương tự.
+ Vẽ parabôn nội tiếp trong một góc cho trước (hình 2.32).
• Cho gócĠ. Vẽ parabôn chứa hai điểm A và B đồng thời nội tiếp trong góc AOB.
• Chia đều cạnh BO và OA thành một số phần như nhau bằng các điểm 1, 2, 3, 4,5 và 1' , 2' ,3', 4' , 5' ...
• Nối các điểm chia tương ứng 1–1', 2–2', 3 – 3', 4–4', 5–5'
• Từ các điểm 2', 4 và kẻ các đường thẳng song song với trung tuyến OI tới cắt các đoạn thẳng 44' và 22' ta được hai điểm C và D là những điểm thuộc Prabôn. Các điểm E, F xác định tương tự. Xem hình 3.32
C. Hypécbôn
Hypécbôn là quỹ tích các điểm có hiệu khoảng cách tới hai điểm cố định F1 và F2 bằng một hằng số.
½MF1 – MF2 ½ = A1A2 = 2a
F1 và F2 gọi là tiêu điểm của Hypécbôn, đường thẳng nối hai tiêu điểm F1 và F2 là trục hypécbôn, hai điểm A1và A2 là hai đỉnh của hypécbôn (hình 3.33).Cách vẽ hypécbôn
Khi biết hai tiêu điểm F1, F2 và hai đỉnh của nó như sau:
• Trên trục Ox, lấy một điểm tuỳ ý ngoài hai tiêu điểm (điểm 2 chẳng hạn). • Quay cung tâm F1, bán kính r2= A1 2, quay cung tròn tâm F2, bán kính R2 =
A2 2 và nhận được giao điểm S là một điểm thuộc hypécbôn. Các điểm khác cũng thực hiện tương tự (hình 2.34).
Trên hình 2.34 ta vẽ đường tròn tâm O có đường kính F1 F2 và hình chữ nhật có 2 cạnh qua A1, A2 để xác định hai đường tiệm cận của hypécbôn.
D. Đường sin
Đường sin là đường cong có phương trình y = sinx.Cách vẽ đường sin được mô tả trong hình 2.35.
• Vẽ đường tròn cơ sở tâm O, bán kính R.
• Trên O'x lấy đoạn O'A = 2( R; Chia đều đường tròn cơ sở và đoạn thẳng O'A thành một số phần như nhau (12 phần chẳng hạn) bằng các điểm 1, 2, 3, 4 ...và 1' , 2', 3', 4'...
• Qua các điểm 1, 2, 3, ...trên đường tròn cơ sở kẻ các đường thẳng song song với trục O'x và qua các điểm 1', 2', 3'...trên trục O'x kẻ các đường thẳng song song với trục y. Giao điểm của 11'; 22' ... là những điểm thuộc đường sin cần xác định.
E. Đường xoáy ốc Acsimét
Đường xoáy ốc Acsimét là quỹ đạo của một điểm chuyển động đều trên một bán kính khi bán kính này quay đều quanh tâm O.Khoảng dịch chuyển của điểm trên bán kính khi bán kính này quay được 3600 gọi là bước xoáy ốc a.Khi vẽ đường xoáy ốc acsimét người ta cho biết bước xoắn a. Cách vẽ được trình bầy trong đoạn video hình 2.36.
• Vẽ đường tròn tâm O, bán kính a.
• Chia đều bán kính a và đường tròn thành 1 số phần như nhau bằng các điểm 1, 2 3...và 1', 2', 3' ...
• Vẽ các cung tròn tâm O, bán kính O 1, O 2, O 3... cắt các bán kính O1', O2', O3' tại M1, M2, M3 ... là các điểm cần xác định.
G. Đường thân khai của đường tròn
Đường thân khai của đường tròn là quỹ đạo của một điểm thuộc đường thẳng khi đường thẳng này lăn không trượt trên một đường tròn cố định.Đường tròn cố định gọi là đường tròn cơ sở. Khi vẽ đường thân khai người ta cho biết bán kính đường tròn cơ sở.Cách vẽ đường thân khai(hình 2.37).
• Chia đường tròn cơ sở ra một số phần bằng nhau (12 phần chẳng hạn) bằng các điểm 1, 2, 3, ...12.
• Tại các điểm 1, 2, 3, vẽ các đường tiếp tuyến với đường tròn. Trên đường tiếp tuyến qua điểm 12 lấy một đoạn bằng chu vi đường tròn cơ sở bằng 2(R. • Chia đoạn 2(R thành 12 phần bằng nhau bằng điểm 1', 2', 3', ...,12'.
• Lần lượt đặt trên các tiếp tuyến tại 1, 2, 3, ... các đoạn: 12 M12 = 12 12'; 1 M11 = 12 11'; 2 M10 = 12 10' ...
ta được các điểm M12 , M11 , M10 ...là các điểm thuộc đường thân khai của đường tròn tâm O bán kính R cần xác định.
H. Đường Xiclôit
Đường xiclôit là quỹ đạo của một điểm thuộc một đường tròn, khi đường tròn đó lăn không trượt trên một đường thẳng cố định.Đường tròn lăn gọi là đường tròn cơ sở, đường thẳng cố định gọi là đường thẳng định hướng. Khi vẽ người ta cho biết đường kính của đường tròn cơ sở và đường thẳng định hướng.Cách vẽ như sau(hình 2.38)
• Vẽ đường tròn tâm O, bán kính R tiếp xúc với đường thẳng định hướng tại M. • Trên đường thẳng định hướng lấy đoạn OA bằng chu vi đường tròn cơ sở và
bằng 2pR.
• Chia đều đường tròn cơ sở và OA thành một số phần như nhau (12 phần chẳng hạn) bằng các điểm 1, 2, 3, ..., 12 và 1', 2', 3', ...,12'.
+ Từ các điểm 1', 2', 3' ... kẻ các đường thẳng vuông góc với đường thẳng định hướng để xác định các điểm O1, O2, O3...+ Lấy O1, O2, O3... làm tâm vẽ các đường tròn có bán kính bằng bán kính đường tròn cơ sở. Các đường tròn này cắt các đường thẳng song song với đường thẳng định hướng kẻ từ các điểm chia 1, 2, 3, ... tại các điểm M1, M2, M3... Các điểm này chính là các điểm thuộc Xiclôit.
K. Đường Êpixiclôit và đường Hypôxidôit
Đường êpixiclôit và đường hypôxidôit là quỹ đạo của một điểm thuộc một đường tròn khi đường tròn đó lăn không trượt trên một đường tròn cố định khác.Đường tròn lăn gọi là đường tròn cơ sở, đường tròn cố định gọi là đường tròn định hướng.Nếu hai đường tròn (cơ sở và định hướng) tiếp xúc ngoài khi lăn ta có đường êpixiclôit như hình 2.39.Khi vẽ đường êpixiclôit người ta cho bán kính r của đường tròn cơ sở, bán kính R và tâm của đường tròn định hướng. Góc được tính theo công thức:
* Nếu đường tròn cơ sở và đường tròn định hướng tiếp xúc trong với nhau ta có đường hypôxiclôit (hình 2.40).