4. Kết cấu bài nghiên cứu
2.2.3. Phân tích nhân tố khám phá (EFA)
Điều kiện để phân tích nhân tố khám phá là phải thỏa mãn các yêu cầu:
Thứ nhất, trị số KMO ≥ 0,5 và mức ý nghĩa của kiểm định Bartlett căn cứ trên giá trị Sig. ≤0,05.
Kiểm định Bartlett là đại lượng thống kê dùng để xem xét giả thuyết các biến không có tương quan trong tổng thể. Điều kiện cần để áp dụng phân tích nhân tố là Sig ≤ 0,05 các biến phải có tương quan với nhau (Hoàng Trọng & Chu Nguyễn Mộng Ngọc, 2005). Do đó, nếu kiểm định cho thấy không có ý nghĩa thống kê thì không nên
Olkin) là một chỉ số dùng để xem xét sự thích hợp của phân tích nhân tố. Trị số KMO lớn (0,5 ≤ KMO ≤ 1) thì phân tích nhân tố là thích hợp, còn nếu trị số này nhỏ hơn 0,5 thì phân tích nhân tố có khả năng không thích hợp với các dữ liệu.
Thứ hai, đại lượng Eigenvalue >1
Đại lượng Eigenvalue đại diện cho lượng biến thiên được giải thích bởi mỗi nhân tố. Chỉ có nhữngnhân tố nào có Eigenvalue lớn hơn 1 mới được giữ lại trong mô hình phân tích. Những nhân tố có Eigenvalue nhỏ hơn 1 sẽ không có tác dụng tóm tắt thông tin tốt hơn một biến gốc, vì sau khi chuẩn hóa mỗi biến gốc có phương sai là 1.
Thứ ba, tổng phương sai trích >= 50%
Tổng phương sai trích (Variance Explained Criteria) là phần trăm phương sai toàn bộ được giải thích bởi từng nhân tố. Nếu coi biến thiên là 100% thì giá trị này cho biết phân tích nhân tố giải thích được bao nhiêu %. Tổng phương sai trích tối thiểu phải bằng 50% thì phân tích nhân tố được xem là phù hợp (Anderson & Gerbing, 1988)
Thứ tư, hệ số tải nhân tố >0,5
Hệ số tải nhân tố (Factor loading) là chỉ tiêu cho thấy mối quan hệ chặt chẽ giữa biến quan sát và nhân tố. Theo Hair & cộng sự (1998), hệ số tải nhân tố là chỉ tiêu để đảm bảo mức ý nghĩa thiết thực của EFA: Factor loading > 0,3 được xem là đạt mức tối thiểu; Factor loading > 0,4 được xem là quan trọng; Factor loading > 0,5 được xem là có ý nghĩa thực tiễn. Trong nghiên cứu này người nghiên cứu chọn Factor loading ≥ 0,5. Nếu biến quan sát nào có hệ số tải nhân tố nhỏ hơn 0,5 sẽ bị loại.