III. Bài tập trắc nghiệm 1 Nhận biết
1. Định lý Ta-lét trong tam giác
- Định lý :
+ Nếu một đường thẳng cắt hanh cạnh của một tam giác và song song với cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.
+ Đảo lại, nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.
- Hệ quả : Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
a // BC, suy ra AM AN MN.
AB AC BC
Hệ quả trên vẫn đúng, nếu đường thẳng a song song với một cạnh và cắt hai đường thẳng chứa
- Định lý Ta – lét tổng quát:
Nhiều đường thẳng song song đinh ra trên hai cát tuyến bất kì các cặp đoạn thẳng tỉ lệ // // , a b c suy ra ' ' ' ' AB A B BC B C - Bổ đề hình thang:
Trong hình thang hai đáy không bằng nhau, giao điểm của hai đường thẳng chứa hai canh bên, giao điểm của hai đường chéo và trung điểm của hai đáy cùng năm trên một đường thẳng.
- Chùm đường thẳng đồng quy:
Nếu các đường thẳng đồng quy cắt hai đường thẳng song song thì chúng định ra trên hai đường thẳng song song ấy các cặp đoạn thẳng tỉ lệ.
AB BC
- Định lý Xê – va:
Cho tam giácABCvà 3 điểmA B C', ,' 'lần lượt nằm trên ba cạnhBC CA AB, , (A B C', ,' ' không trùng với các đỉnh của tam giác). Khi đó ta có:AA ,' BB CC', 'đồng quy khi và chỉ khi
' ' '' . ' . ' 1 ' . ' . ' 1
A B B C C A AC B A C B
- Định lý Mê – nê – la- uýt:
Cho tam giácABCvà 3 điểmA B C', ,' 'lần lượt nằm trên các đường thẳngBC CA AB, , ( ', ,' '
A B C không trùn với các dỉnh của tam giác sao cho trong 3 điểm đó có dúng một điểm hoặc cả 3 điểm nằm ngoài tam giác.) Khi đó ta có:A B C', ,' 'thẳng hàng khi và chỉ khi
' ' '' . ' . ' 1 ' . ' . ' 1
A B B C C A AC B A C B