Khoáng sét là một loại aluminosilicat có cấu trúc lớp, được hình thành từ các tứ diện oxyt silic sắp xếp thành mạng hình lục giác, liên kết với các mạng bát diện [1], [2], [20], cho nên trong thành phần các loại khoáng sét chủ yếu là các nguyên tố Si và Al, nhưng hàm lượng silic lớn hơn nhôm, ngoài ra còn có các nguyên tố khác như sắt (Fe), magie (Mg), kali (K), natri (Na), canxi (Ca),…Tuỳ từng hàm lượng của chúng có mặt trong khoáng sét mà ta có thể phân loại khoáng sét khác nhau.
Bảng I.6. Phân loại một số khoáng sét thường gặp theo thành phần 3 nguyên
tố chủ yếu Al, Fe, Mg (không kể Si).
Tên khoáng sét Nguyên tố có nhiều
trong thành phần Tên khoáng sét
Nguyên tố có nhiều trong thành phần Beidelit Montmorilonit Nontronit Saponit Vermiculit Al Al (Mg, Fe2+ ít) Fe3+ Mg, Al Mg, Fe2+, Al (Fe3+ ít) Kaolinit, haloysit Sepiolit Ilit Clorit Talc Al Mg, Al K, Al (Fe, Mg ít) Mg, Fe2+, Al Mg, Fe2+
Thông thường để nhận biết nhanh từng loại khoáng sét người ta thường dựa vào sự có mặt của các nguyên tố Al, Fe, Mg (không kể Si) có trong thành phần của nó [1], [4].
Cao lanh là một loại khoáng sét tự nhiên ngậm nước mà thành phần chính là khoáng vật kaolinit, có cấu trúc 1:1 dạng diocta, chiếm khoảng 85-90% trọng lượng [1], [4], [11], [13], [16]. Công thức hóa học đơn giản là Al2O3.2SiO2.2H2O, công thức lý tưởng là Al4(Si4O10)(OH)8 với hàm lượng SiO2 = 46,54%; Al2O3 = 39,5% và H2O = 13,96% trọng lượng. Tuy nhiên, trong thực tế thành phần lý tưởng này thường rất ít gặp [1], [ 8], [13], [16], vì ngoài ba thành phần chính kể trên, thường xuyên có mặt Fe2O3, TiO2, MgO, CaO, K2O, Na2O với hàm lượng nhỏ. Ngoài ra, trong cao lanh nguyên khai còn chứa các khoáng khác như haloysit, phlogopit, hydromica, felspat, α-quartz, rutil, pyrit... nhưng hàm lượng không lớn.
Trong các loại khoáng vật sét thì kaolinit có hàm lượng Al2O3 lớn nhất, thường từ 36,83 ÷ 40,22%; SiO2 có hàm lượng nhỏ nhất, từ 43,64 ÷ 46,90%; các oxyt khác chiếm từ 0,76 ÷ 3,93%; lượng nước hấp phụ bề mặt và lượng mất khi nung từ 12,79 ÷ 15,37%, đôi khi bằng 10% [1], [4]. Tỷ số mol SiO2/R2O3 (R: Al, Fe) thay đổi từ 1,85 ÷ 2,94, trong đó tỷ số SiO2/Al2O3 thông thường từ 2,1 ÷ 2,4 và cá biệt có thể bằng 1,8 [1], [8].
: Oxy : hydroxyl : Silic : Nhôm
Hình I.13. Sơ đồ không gian mạng lưới cấu trúc của kaolinit
Cấu trúc tinh thể của kaolinit được hình thành từ một mạng lưới tứ diện silic
c = 7, 15 a c b
không gian của kaolinit, ở mạng bát diện cứ ba vị trí tâm bát diện có hai vị trí bị Al3+ chiếm giữ còn một vị trí bị bỏ trống. Điều đó giúp phân biệt kaolinit thuộc phân nhóm diocta.
Các tứ diện đều quay đỉnh chung về phía mạng bát diện. ở vị trí đỉnh chung của tứ diện và bát diện thì ion OH- của bát diện được thay bằng ion O2- của tứ diện. Do có cấu tạo như vậy nên mặt chứa những ion O2- nằm cạnh mặt chứa những ion OH-. Giữa hai mặt đó xuất hiện một lực liên kết giữ chặt các lớp lại, chính vì vậy mà mạng tinh thể kaolinit ít di động, hấp phụ ít nước, không trương nở.
I.3.2. Các tính chất cơ bản của cao lanh
Cũng như các khoáng sét khác, ba tính chất cơ bản của cao lanh thường được đề cập đến là tính chất trao đổi ion, tính chất hấp phụ và tính chất xúc tác.
Bề mặt riêng của kaolinit không lớn, thường dao động từ 15 ÷ 20 m2/g. Điều này đồng nghĩa với khả năng hấp phụ kém của kaolinit. Do có cấu trúc lớp kiểu 1:1, khả năng trương nở rất kém nên người ta thường không sử dụng kaolinit làm chất xúc tác mà chỉ sử dụng nó với vai trò chất nền.
Hình I.14. Các vị trí trao đổi ion khác nhau đối với hạt kaolinit.
Tính chất cơ bản còn lại của kaolinit là tính chất trao đổi ion. Trong đó, quá trình trao đổi cation vào mạng tinh thể kaolinit thường được quan tâm nhiều hơn do khả năng ứng dụng rộng hơn so với trao đổi anion [1]. Đối với kaolinit, dung lượng trao đổi cation (CEC) rất nhỏ, chỉ khoảng 3 ÷ 15 meq/100g [1], [8] và thường phản ánh hai tính chất quan trọng, đó là diện tích bề mặt và điện tích trên diện tích bề mặt ấy.
Vị trí trao đổi trên bề mặt
Vị trí trao đổi bên trong Hạt
CEC của kaolinit phụ thuộc nhiều vào pH của môi trường trao đổi và tăng dần từ môi trường axit đến môi trường kiềm [8]. Ngoài ra, CEC còn phụ thuộc vào bản chất của các cation trao đổi: với cation trao đổi hóa trị hai thường cho CEC lớn hơn so với cation trao đổi hoá trị một. Điều này, được giải thích bởi phản ứng cho - nhận proton xuất hiện đồng thời trên các vị trí của Si và Al trong mạng lưới cấu trúc.
Khi nghiên cứu nguyên nhân gây ra sự trao đổi cation trong kaolinit, các nhà nghiên cứu cho rằng, có 2 nguyên nhân chủ yếu:
1) Sự phá vỡ liên kết trên bề mặt aluminosilicat làm tăng điện tích chưa bão hòa và cần được cân bằng bởi các cation hấp phụ.
2) Trong mạng lưới tinh thể kaolinit tồn tại các nhóm OH. Nguyên tử H của nhóm này có thể cũng bị thay thế bởi các cation có khả năng trao đổi. Một số nhóm OH bao quanh bề mặt bị phá vỡ của kaolinit đã tạo điều kiện cho các nguyên tử H trong nhóm này thực hiện phản ứng trao đổi. Đây là nguyên nhân trực tiếp gây ra sự trao đổi cation trong kaolinit.
Ngoài ra, có thể còn một nguyên nhân thứ ba là sự thay thế đồng hình Si4+ bằng Al3+ trong mạng lưới tứ diện và Al3+ bằng các cation có hóa trị thấp hơn (thường là Mg2+) trong mạng lưới bát diện làm xuất hiện điện tích âm trong mạng lưới cấu trúc, dẫn đến sự trao đổi cation trong kaolinit.
Như vậy, kaolinit là aluminosilicat tự nhiên có dung lượng trao đổi cation nhỏ, khả năng hấp phụ kém và hoạt tính xúc tác thấp nên ít có giá trị sử dụng làm chất trao đổi ion, chất hấp phụ và chất xúc tác. Điều này hoàn toàn trái ngược với các tính chất của aluminosilicat tinh thể (zeolit), nên việc nghiên cứu chuyển hóa kaolinit thành zeolit rõ ràng không chỉ rất có ý nghĩa về mặt lý thuyết mà còn có ý nghĩa lớn về mặt thực tiễn.
I.3.3. Ứng dụng của cao lanh
Cao lanh được ứng dụng trong nhiều ngành công nghiệp như: dùng làm chất nền cho xúc tác (chất mang), để pha vào dung dịch khoan, để khử mùi, tẩy trắng cho hiệu quả khá cao, dùng làm chất độn cho xi măng, gốm sứ, phụ gia cho sơn,….
Một ứng dụng quan trọng hơn cả của cao lanh là làm nguyên liệu cho tổng hợp zeolit [1], [12] một vật liệu không thể thiếu trong các ngành công nghiệp phát triển như hiện nay, nhất là trong ngành công nghệ lọc hóa dầu. Sử dụng zeolit trong các phân đoạn như cracking xúc tác (zeolit Y), izome hoá (zeolit mordenit), alkyl hoá (ZSM-5) [1], [16] polyme hoá… không những làm tăng năng suất, tăng hiệu quả kinh tế mà còn làm giảm ô nhiễm môi trường [4], [8].
I.4. CÁC PHƯƠNG PHÁP NGHIÊN CỨU CẤU TRÚC ĐẶC TRƯNG NANOZEOLIT NANOZEOLIT
I.4.1. Phương pháp phổ nhiễu xạ Rơnghen (XRD)
Mục đích sử dụng phổ nhiễu xạ Rơnghen là nhận diện nhanh và chính xác các pha tinh thể, đồng thời có thể sử dụng để định lượng pha tinh thể và kích thước hạt zeolit với độ tin cậy cao.
Theo lý thuyết cấu tạo tinh thể, mạng lưới tinh thể được cấu tạo từ những nguyên tử hay ion phân bố một cách đều đặn trong không gian theo quy luật xác định. Khoảng cách giữa các nguyên tử hay ion khoảng vài Å, tức là gần bằng bước sóng của tia X. Do đó khi chùm tia X tới đập vào bề mặt tinh thể và đi sâu vào bên trong nó thì mạng tinh thể đóng vai trò là một cách tử nhiễu xạ đặc biệt. Chùm tia X đơn sắc hợp với mặt đơn tinh thể zeolit một góc θ.
Trong trường hợp này mặt đơn tinh thể của zeolit trùng với một mặt mạng tinh thể có khoảng cách giữa các mặt là d. Chùm tia X tương tác với các electron trong hỗn hợp vỏ nguyên tử trong mạng zeolit sẽ tán xạ đàn hồi và truyền ra mọi hướng. Do các nguyên tử trong zeolit sắp xếp một cách quy luật, tuần hoàn vô hạn trong không gian nên có những hướng mà theo hướng đó các tia tán xạ từ những nguyên tử khác nhau giao thoa, hiện tượng chùm tia sáng song song, tán xạ từ các nút mạng khi chồng chập tạo ra vân giao thoa có biên độ tăng cường là hiện tượng nhiễu xạ.
Hình I.15. Sơ đồ tia tới và tia phản xạ trên tinh thể
Theo điều kiện giao thoa để các sóng phản xạ trên 2 mặt phẳng cùng pha thì hiệu quang trình ∆ =2d.sinθ phải bằng số nguyên lần độ dài sóng:
∆ =2d.sinθ = nλ.
Trong đó: - d là khoảng cách giữa hai mặt liền kề.
- θ là góc giữa chùm tia X và mặt phẳng phản xạ. - ∆ là hiệu quang trình của hai tia phản xạ.
Đây chính là hệ thức Vulf – Bragg, là phương trình cơ bản để nghiên cứu cấu trúc mạng tinh thể [1], [9].
Với một nguồn tia X có bước sóng xác định, khi thay đổi góc tới θ thì mỗi vật liệu đều có một giá trị d đặc trưng. Do vậy, để đánh giá định tính ta so sánh giá trị d đã xác định với giá trị d của mẫu chuẩn sẽ xác định được thành phần cấu trúc mạng tinh thể của chất nghiên cứu.
Độ tinh thể tương đối được xác định theo công thức [9]: Độ tinh thể (%) = 100.A/B.
Trong đó: A và B tương ứng là cường độ pic đặc trưng của mẫu nghiên cứu và mẫu chuẩn.
Sử dụng XRD cũng có thể xác định được kích thước trung bình của các tinh thể có độ chọn lọc tinh thể cao trong khoảng 40-20000Å theo phương trình Scherrer's:
D = 2 2 S FWHM * * ) Cos( 180 * * K − π θ λ Trong đó: - D là kích thước tinh thể hạt. θ d
- FWHM là độ rộng trung bình của pic đặc trưng. - K : là hằng số xấp xỉ bằng 1.
- λ : là bước sóng chùm tia tới.
- S : hệ số hiệu chỉnh phụ thuộc vào độ rộng khe của máy chụp XRD. I.4.2. Phương pháp phổ hồng ngoại (IR)
Phổ hồng ngoại đã được sử dụng để nghiên cứu cấu trúc của tinh thể từ khá lâu. Tuy nhiên, phương pháp này có hạn chế nhất định vì nó chỉ phát huy được ưu điểm khi nghiên cứu cấu trúc của những pha tinh khiết. Phương pháp IR gặp phải những khó khăn nhất định khi phân tích hỗn hợp nhiều pha khác nhau, nên nó chỉ được sử dụng như là một phương pháp để nhận diện. Cơ sở lý thuyết của phương pháp này là dựa vào khả năng hấp thụ bức xạ hồng ngoại của các phân tử khi dao động. Tuy nhiên, chỉ có những phân tử khi dao động gây sự thay đổi momen lưỡng cực điện thì có hiệu ứng này.
Nguyên tắc của phương pháp là khi chiếu một chùm tia đơn sắc qua chất ta cần phân tích với số sóng nằm trong vùng hồng ngoại, một phần năng lượng bị hấp thụ sẽ giảm cường độ tia tới. Sự hấp thụ năng lượng này tuân theo định luật Lambe- Beer.
D = lg(I0/I) = k.d.c
Trong đó:
- D: là mật độ quang.
- I, I0: cường độ ánh sáng trước và sau khi ra khỏi chất phân tích. - C: nồng độ chất phân tích.
- K: hệ số hấp thụ. - T = I/I0: độ truyền qua.
Đối với zeolit, khả năng hấp thụ bức xạ hồng ngoại phụ thuộc vào năng lượng liên kết của các cấu tử khác nhau trong cấu trúc tinh thể.
Độ dài liên kết giữa các nguyên tử và góc hoá trị tăng giảm tuần hoàn do phân tử bị hấp phụ năng lượng sẽ làm xê dịch các hạt nhân nguyên tử xung quanh vị trí
cân bằng của nó. Đường cong biểu diễn sự phụ thuộc của độ truyền qua vào bước sóng gọi là phổ hấp thụ hồng ngoại [1], [4], [8]. Trên phổ hồng ngoại sẽ xuất hiện một bước sóng đặc trưng bằng các điểm cực đại ở mỗi nhóm chức hoặc mỗi liên kết. Căn cứ vào điểm cực đại này có thể xác định được liên kết giữa các nguyên tử hoặc nhóm nguyên tử, từ đó xác định được cấu trúc của chất nghiên cứu.
Hình I.16. Phổ IR trong vùng dao động tinh thể của một số loại zeolit.
Phổ IR của zeolit chủ yếu được ghi trong vùng dao động từ 400 cm-1 đến 1300cm-1 và được chia làm hai nhóm [1]:
+ Nhóm 1: gồm các dao động bên trong tứ diện TO4 (T là Al hay Si). Các dao động này được thể hiện trong mọi loại zeolit và ít nhạy với sự thay đổi cấu trúc.
+ Nhóm 2: gồm các dao động bên ngoài tứ diện TO4, nó bị chi phối bởi liên kết giữa các tứ diện TO4 với nhau và phụ thuộc vào cấu trúc của zeolit.
Năm nhóm phổ đặc trưng của các aluminosilicat vô định hình và zeolit là: + Vùng 420 – 500 cm-1 đặc trưng dao động hoá trị đối xứng của T-O-T bên trong tứ diện TO4. Đám phổ này có cả dao động vô định hình và tinh thể. Vì vậy, nó không đặc trưng cho cấu trúc tinh thể.
+ Vùng 500 – 650 cm-1 đặc trưng cho các dao động của các vòng kép 4,5,6 cạnh. Nó đặc trưng cho trạng thái tinh thể của zeolit.
+ Vùng 650– 950 cm-1 đặc trưng cho các dao động đối xứng của T-O-T trong và ngoài tứ diện TO4. Vùng này cũng đặc trưng cho trạng thái tinh thể.
+ Vùng 950 – 1200 cm-1 đặc trưng cho các dao động hoá trị bất đối xứng của các liên kết ngoài tứ diện TO4.
+ Vùng xung quanh 1200 cm-1 đặc trưng cho các dao động hoá trị bất đối xứng xung quanh các liên kết ngoài tứ diện TO4 nên rất nhạy với các biến đổi cấu trúc. Tuy nhiên trong vùng này cường độ đám phổ bé hơn nhiều so với cường độ đám phổ gần vùng 540 - 620cm-1 nên không dùng để xác định độ tinh thể.
I.4.3. Phương pháp hiển vi điện tử quét (SEM)
Đây là phương pháp khá hiện đại sử dụng để nghiên cứu bề mặt, hình dạng và kích thước của các hạt vật chất [1], [4], [18].
Nguyên tắc cơ bản của phương pháp SEM là dùng chùm điện tử để tạo ảnh của mẫu nghiên cứu, ảnh đó khi đến màn huỳnh quang có thể đạt độ phóng đại rất lớn từ hàng nghìn đến hàng chục nghìn lần.
Chùm điện tử được tạo ra từ catốt qua hai tụ quang sẽ được hội tụ lên mẫu nghiên cứu. Chùm điện tử đập vào mẫu phát ra các điện tử phản xạ thứ cấp. Mỗi điện tử phát xạ này qua điện thế gia tốc vào phần thu và biến đổi thành tín hiệu sáng, chúng được khuếch đại đưa vào mạng lưới điều khiển tạo độ sáng trên màn hình. Mỗi điểm trên mẫu nghiên cứu cho một điểm trên màn hình. Độ sáng tối trên màn hình tuỳ thuộc lượng điện tử thứ cấp phát ra tới bộ thu, đồng thời còn phụ thuộc sự khuyết tật bề mặt của mẫu nghiên cứu. Đặc biệt do sự hội tụ các chùm tia nên có thể nghiên cứu cả phần bên trong của vật chất.
Đối với phương pháp SEM, độ phân giải của phép tán xạ có thể tới 0,01 x 10-6m. Do đó phương pháp này thường dùng để nghiên cứu những khoáng vật phân tán nhỏ, kích thước dưới 1 x 10-6m với hiệu quả rất cao.
Khi phân tích cần đem khoáng vật khuếch tán trong dung dịch nước amon thành dung dịch keo, sau đó nhỏ những giọt keo lên một mạng lưới có nhiều lỗ nhỏ đường kính khoảng 2mm, rồi đặt vào chỗ khô ráo cho bay hơi nước. Sau đó phủ một lớp mỏng cacbon hoặc kim loại nặng lên bề mặt mẫu đã phân tán để làm tăng độ tương phản. Cuối cùng đưa vào kính hiển vi điện tử để quan sát. Trong điều kiện
chân không, khi chùm tia điện tử đi qua màng keo sẽ chiếu hình dạng các hạt lên một màn huỳnh quang giúp chúng ta quan sát gián tiếp các hạt và chụp ảnh nó. Như vậy, bằng phương pháp hiển vi điện tử quét (SEM) ta có thể quan sát cấu