Kỹ thuật này dựa trên hiệu ứng đơn giản là: các hợp chất hoá học có khả năng hấp thụ chọn lọc bức xạ hồng ngoại. Sau khi hấp thụ các bức xạ hồng ngoại, các phân tử của các hợp chất hoá học dao động với nhiều vận tốc dao động và xuất hiện dải phổ hấp thụ gọi là phổ hấp thụ bức xạ hồng ngoại.
Các đám phổ khác nhau có mặt trong phổ hồng ngoại tương ứng với các nhóm chức đặc trưng và các liên kết có trong phân tử hợp chất hoá học. Bởi vậy phổ hồng ngoại của một hợp chất hoá học coi như "dấu vân tay", có thể căn cứ vào đó để
nhận dạng chúng.
Bức xạ hồng ngoại có độ dài sóng từ 0,8 đến 1000µm và chia thành ba vùng: Cận hồng ngoại (near infrared) λ = 0,8 – 2,5µm
Trung hồng ngoại (medium infrared) λ = 2,5 – 50µm Viễn hồng ngoại (far infrared) λ = 50 - 100µm
Trong thực tế, phổ hồng ngoại thường được ghi với trục tung biểu diễn T%, trục hoành biểu diễn số sóng với trị số giảm dần (4000 – 400 cm-1).
Hình 2.13: Khoảng hấp thụ hồng ngoại của một số lên kết hóa học.
FTIR-6300 là thiết bị quang phổ áp dụng để đo phổ hồng ngoại bởi sự biến đổi chuỗi Fourier nhờ một giao thoa kế Michealson. Giao thoa kế Michealson gồm gương phẳng di động, một gương cố định và một tấm kính phân tách ánh sáng. Ánh sáng từ nguồn sáng chiếu vào tấm kính phân tách được tách ra thành hai phần bằng nhau, một phần đi qua gương di động và một phần đi qua gương cố định sau đó phản xạ trở lại qua kính phân tách, một nửa trở về nguồn, còn một nửa chiếu qua mẫu đi đến detectơ. Do có sự trễ giữa đoạn đường đi của ánh sáng đến gương di động và gương cố định nên ánh sáng sau khi đi qua giao thoa kế biến đổi từ tần số cao xuống tần số thấp. Sau đó ánh sáng đi qua mẫu bị hấp thụ một phần rồi đi đến detectơ, phổ kế sẽ tổng hợp và số hóa từ bộ giao thoa kế Michealson theo biến đổi Fourier nhận được một phổ hồng ngoại với độ phân giải và tỉ số tín hiệu/nhiễu (S/N) cao.
CHƢƠNG 3: KẾT QUẢ VÀ THẢO LUẬN
Các mẫu sau khi chế tạo được khảo sát về mặt cấu trúc, hình thái, khảo sát tính chất quang – từ của các hạt đơn chức năng ZnS:Mn, Fe3O4, hạt đa chức năng ZnS:Mn-Fe3O4; đồng thời để tìm hiểu khả năng ứng dụng vào trong y sinh, sinh học, hạt đa chức năng ZnS:Mn-Fe3O4 được chứng minh sự tồn tại của nhóm – NH2
trên lớp vỏ sau khi được chức năng hoá bề mặt.
Trước tiên, trong phần dưới đây, tính chất quang đối với hạt nano ZnS:Mn ở các tỷ lệ khác nhau được khảo sát để tìm ra tỷ lệ pha tạp Mn vào ZnS cho kết quả huỳnh quang tốt nhất.