Cú pháp của LTL

Một phần của tài liệu Các nguyên lý và kỹ thuật kiểm chứng chất lượng phần mềm (Trang 42 - 44)

5. Phương pháp nghiên cứu

2.5.1 Cú pháp của LTL

Công thức LTL trên tập AP, gồm các mệnh đề nguyên tử, được tạo nên dựa trên cú pháp sau: 1 2 1 2 :: true a ϕ ϕ ϕ ϕ ϕ | ϕ Φ = ∧ ¬ U Trong đó aAP. Thứ tựưu tiên:

-Các toán tử 1 ngôi được ưu tiên hơn toán tử 2 ngôi -¬ và tương đương nhau.

-Toán tử thời gian Uđược ưu tiên hơn , và → . Ví dụ Ta có thể viết: ¬ϕ1U ϕ2 thay vì (¬ϕ1) (U ϕ2).

Toán tử U có độưu tiên phải, ví dụ:

1 2 3

ϕ ϕU Uϕ tương đương với ϕ1U(ϕ2Uϕ3).

Toán tử until (U) cho phép suy ra các phương thức thời gian <>(gần đây) và

ef d true ϕ ϕ <> = U []ϕd= ¬ <> ¬ef ϕ ϕ

<> đảm bảo rằng ϕ chắc chắn đúng trong tương lai.

[]ϕ thỏa mãn nếu và chỉ nếu không xảy ra trường hợp ¬ϕ trong tương lai. Mô tả bằng hình ảnh 1 số phép toán LTL( hình 2.6)

Hình 2.6. Mô tả bằng hình ảnh 1 số phép toán LTL

Ví dụ toán tử until a bU , ta thấy, a∧ ¬b true khi và chỉ khi a true và ¬b true. Tức là b luôn false trước khi bnhận giá trị true.

Ví dụ: Các thuộc tính cho vấn đề loại trừ lẫn nhau. Tiến trình Pi được mô hình hóa bởi 3 nơi cư trú: -Vùng không tranh chấp

-Vùng đợi, Tiến trình ởđây trước khi được vào vùng tranh chấp -Vùng tranh chấp.

Các mệnh đề waiticritichỉ ra Tiến trình Pi đang ở trong pha đợi và vùng tranh chấp.

Thuộc tính an toànphát biểu rằng P1 và P2 không bao giờđồng thời truy cập vào vùng tranh chấp giữa chúng bởi biểu thức LTL:

a∧¬b

Atomic prop a

Next step Oa

a arbitrary arbitrary arbitrary arbitrary

a arbitrary arbitrary arbitrary arbitrary a∧¬b a∧¬b b arbitrary a ¬ ¬a ¬a a arbitrary a a a a a Until a b∪ Eventually ◊a Always □a

( 1 2)

[] ¬crit ∨ ¬crit

Công thức này mô tả rằng luôn luôn có ít nhất 1 trong 2 Tiến trình không nằm trong đoạn tới hạn (¬criti).

Yêu cầu sống còn phát biểu rằng mỗi Tiến trình Pi có thể vào đoạn găng rất nhiều lần, mô tả trong công thức sau:

1 2

([]<>crit ) ([]∧ <>crit )

Một phần của tài liệu Các nguyên lý và kỹ thuật kiểm chứng chất lượng phần mềm (Trang 42 - 44)

Tải bản đầy đủ (PDF)

(86 trang)