Đặc điểm thiết kế của thanh nhiên liệu hạt nhân

Một phần của tài liệu Phân tích các đặc trưng của thanh nhiên liệu sử dụng trong lò phản ứng hạt nhân VVER AES2006 (Trang 39)

Trong đó, q’’crit là thông lượng nhiệt tới hạn (W/m2), hcrit là hệ số truyền nhiệt tới hạn (W/m2K), Tcrit lànhiệt độ bề mặt tới hạn (oC), p là áp suất (MPa), u là tốc độ dòng chảy (m/s), Dw là đường kính thủy lực ướt (m), Di là đường kính nguồn nhiệt (m).

Tương quan này có thể áp dụng đối với các kênh tiết diện tròn, chữ nhật và hình vành khăn (xuyến), áp suất 0,1 - 20,6 MPa, tốc độ dòng chảy 1 - 16 m/s và đường kính thủy lực 0,36 - 1,7 cm.

Trong một lò phản ứng PWR, CHF xuất hiện khi mật độ bong bóng từ vùng sôi nhân trong màng ranh giới của thanh nhiên liệu lớn đến mức bong bóng liền kề kết hợp lại và tạo thành một màng hơi trên bề mặt của thanh. Sự truyền nhiệt qua màng hơi là tương đối thấp so với qua màng chất lỏng, và sự xuất hiện CHF làm tăng đáng kể nhiệt độ bề mặt vỏ bọc. Trong điều kiện như vậy, quá trình oxy hóa nhanh chóng (hoặc thậm chí nóng chảy) vỏ bọc có thể xảy ra dẫn đến phá hỏng vỏ bọc.

30

Với các thiết bị trong lò phản ứng, CHF được thể hiện qua DNB đối với lò PWR và điểm khô dòng (Dryout) đối với lò BWR. Đối với lò BWR, Dryout thể hiện ở điểm khởi đầu chuyển tiếp từ màng phân tán sang vùng sôi chuyển tiếp; còn đối với lò PWR, DNB thể hiện ở điểm bọt khí được phát triển, mở rộng. Vị trí DNB và Dryout được miêu tả tương ứng với tỷ phần rỗng cục bộ trong kênh dòng trên Hình 2.11.

Hình 2. 11. Thông lượng nhiệt tới hạn đối với lò PWR và BWR [20]

Tỷ số giữa thông lượng nhiệt tương quan đoán trước và thông lượng nhiệt vận hành thực tế áp dụng cho lò PWR được gọi là tỷ số dời khỏi vùng sôi nhân (DNBR). Tỷ số này thay đổi trên chiều dài thanh nhiên liệu và đạt giá trị nhỏ nhất ở vị trí thông lượng nhiệt tới hạn. Đối với lò BWR, điều kiện Dryout được biểu diễn theo tỷ số công suất tới hạn CPR. Giới hạn áp dụng cho các điều kiện tới hạn được đánh giá thông qua các giá trị nhỏ nhất của DNBR (MDNBR) và của CPR (MCPR).

31

2.4.2. Sự ăn mòn do cọ xát của vỏ bọc thanh nhiên liệu với lƣới định vị [19]

Sự rung động vùng hoạt dưới tác dụng của dòng chảy, tác động của dòng chảy ngang, cùng với sự suy giảm hiệu quả giảm chấn (do rão hóa hệ thống lò xo và lưới đỡ dưới tác dụng bức xạ, nhiệt độ và áp suất trong điều kiện vận hành của lò phản ứng), dẫn tới sự chuyển động tương đối giữa các phần khác nhau của bó thanh nhiên liệu. Hiện tượng không mong muốn xảy ra là sự cọ xát, va trượt giữa vỏ thanh nhiên liệu và lưới định vị, dẫn tới mòn xước thanh nhiên liệu.

Một trong số những dạng ăn mòn thường gặp đối với bó thanh nhiên liệu đó là ăn mòn do cọ xát xảy ra khi các bề mặt tiếp xúc có độ cứng khác nhau dao động tương đối với cường độ nhỏ trong môi trường ăn mòn (Hình 2.12).

Hình 2. 12. Hư hỏng do cọ xát giữa vỏ bọc và lưới định vị [25]

Thống kê tỷ lệ các dạng hư hỏng nhiên liệu phổ biến trong thập kỷ vừa qua tại các lò phản ứng nước nhẹ của Mỹ cho thấy đây thuộc dạng hư hỏng nhiên liệu phổ biến nhất hiện nay (Hình 2.13).

32

Hiện tượng ăn mòn do cọ xát phụ thuộc nhiều vào thiết kế nhiên liệu và vào quá trình chế tạo. Trong lò phản ứng quá trình ăn mòn do cọ xát giữa lưới định vị và thanh nhiên liệu phụ thuộc vào nhiều yếu tố khác nhau, trong đó bao gồm cả các yếu tố về cơ chế rung động thủy lực, cũng như sự rão mỏi vật liệu hay các điều kiện vận hành cụ thể của lò phản ứng….

Hiện nay những ảnh hưởng trực tiếp tới nhiên liệu do ăn mòn cọ xát được đánh giá chủ yếu thông qua quá trình hậu kiểm bằng các thử nghiệm sau chiếu xạ.

2.4.3. Biến đổi hình học thanh nhiên liệu dƣới tác dụng thủy lực [25]

Dưới tác dụng của lực thủy động dòng chất làm mát cùng với sự rão hóa của vật liệu lớp vỏ bọc nhiên liệu sẽ dẫn đến nguy cơ biến dạng của các thanh nhiên liệu trong vùng hoạt. Sự biến dạng của các thanh nhiên liệu thường có dạng hình chữ S hoặc chữ C như trong Hình 2.14.

Hình 2. 14. Biến dạng hình học thanh nhiên liệu, (a) kiểu chữ S, (b) kiểu chữ C [25]

Hậu quả của việc biến dạng hình học các thanh nhiên liệu sẽ dẫn đến:

- Hiện tượng cong vênh của các ống dẫn thanh điều khiển trong BTNLHN. Điều này làm cho các cụm thanh điều khiển không rơi vào vùng hoạt theo thời gian thiết kế;

33

- Làm thay đổi khe hở giữa các thanh nhiên liệu (là kênh dẫn chất làm chậm và tải nhiệt, bình thường khoảng 2 mm), dẫn tới phân bố lại công suất và nhiệt độ cục bộ không đồng đều (Hình 2.15);

- Gây khó khăn khi phải thay đảo (lắp đặt hoặc rút ra) BTNLHN trong vùng hoạt hoặc trong bể chứa BTNLHN đã qua sử dụng.

Hình 2. 15. Quan hệ giữa độ cong bó thanh và độ lệch khỏi kích thước khe hở danh định giữa các bó thanh [8]

Thiết kế nhiên liệu đã có những thay đổi để khắc phục các hậu quả trên. Trong hai thập kỷ qua, phản hồi kinh nghiệm cho thấy rằng dòng làm mát tại đầu vào vùng hoạt tạo ra lực rung lắc cao ở phần dưới của bó thanh nhiên liệu dẫn tới một số hiện tượng ăn mòn nghiêm trọng ở phần dưới thanh nhiên liệu. Để giảm bởi khuyết tật, nhà thiết kế nhiên liệu thêm vào gần đầu dưới bó thanh nhiên liệu một lưới định vị không có cánh trộn dòng làm mát. Lưới định vị thêm vào làm tăng lực nâng và tăng suy giảm áp suất của bó thanh nhiên liệu và do đó làm giảm rung lắc sinh ra bởi dòng làm mát lên các thanh nhiên liệu.

Những cải tiến khác như về độ dày ống dẫn hướng, củng cố khả năng giảm chấn, và lựa chọn vật liệu tốt hơn cho các chi tiết cấu trúc bó thanh nhiên liệu đã làm giảm thiểu ảnh hưởng xấu của dòng chảy thủy lực tới bó thanh nhiên liệu.

So sánh giữa biến đổi của bó thanh nhiên liệu PWR và VVER dưới áp lực thủy động, có một số điểm chính sau:

34

- Bó thanh nhiên liệu VVER theo thiết kế có khung giữ tuy độ ổn định tốt hơn so với bó thanh PWR nhưng độ suy giảm áp suất lại cao hơn nên mang lại ít lợi ích hơn về khả năng làm mát, DNB,…;

- Biến dạng giãn dài của bó thanh VVER thấp hơn so với bó thanh PWR; đồng thời với thiết kế có khung giữ nên bó thanh VVER giảm thiểu tốt hơn sự rủi ro trong quá trình nạp tải nhiên liệu và cố định các thanh nhiên liệu;

- Trong điều kiện tai nạn/sự cố LOCA, phần chân đế của bó thanh nhiên liệu PWR chịu lực tác động của dòng làm mát nhỏ hơn so với bó thanh nhiên liệu VVER.

Lực thủy động của dòng nước gây áp lực và tạo ra sự rung lắc bó thanh nhiên liệu, trong khi thanh nhiên liệu chịu lực nén ép của các lò xo hướng xuống và sự dài ra của bó thanh nhiên liệu do bức xạ. Nói chung bó thanh nhiên liệu của lò nước áp lực (PWR) tiếp xúc với điều kiện thủy động cường độ mạnh và mức độ hỗn độn cao.

Sự bất ổn định của dòng chất làm mát là một trong những cơ chế phá hủy các bộ phận thành phần trong vùng hoạt, tạo ra các rung lắc quá mức đảm bảo của các bộ phận giảm xóc, khi mà vận tốc dòng làm mát đủ lớn để năng lượng hấp thụ từ tác động thủy lực vượt quá năng lượng tiêu tán bởi các thành phần giảm xóc. Tác động của những biến đổi hỗn loạn tạo ra áp lực ngẫu nhiên xung quanh bề mặt nhiên liệu đủ để làm mài mòn và làm hư hỏng các thành phần nhiên liệu.

Vào cuối thể kỷ 20, việc không đưa được hết các thanh điều khiển (RCCA) vào vùng hoạt khi dập lò khẩn cấp hay trong quá trình thử nghiệm đã được quan tâm bởi một số nhà vận hành và nhà chế tạo nhiên liệu trên thế giới. Sự cố đầu tiên của loại này xảy ra ở nhà máy điện hạt nhân Ringhals 4 (Thụy Điển) năm 1994, khi mà một thanh điều khiển không chèn được toàn bộ vào vùng hoạt (IRI - Insertion Rod Incident). Sau sự cố này, các sự cố IRI tương tự đã được xem xét trong một số lò phản ứng khác ở nhiều nước như Hoa Kỳ, Pháp, Bỉ,…

35

Hình 2.16, Hình 2.17 cho thấy dữ liệu về độ cong, cũng như hướng và biên độ của các tác động thủy lực tới bó thanh nhiên liệu trong các lò phản ứng Ringhals.

Hình 2. 16. Độ cong bó thanh nhiên liệu của ba lò phản ứng Ringhals (Thụy Điển)

Hình 2. 17. Hướng và biên độ uốn cong thanh nhiên liệu trong vùng hoạt lò phản ứng [25]

36

2.5. Đặc trƣng quá trình oxy hóa và hydro hóa đối với thanh nhiên liệu [2] 2.5.1. Quá trình oxy hóa

Tác nhân oxy hóa vỏ bọc nhiên liệu trong lò phản ứng có từ các nguồn sau đây:

a. Phía trong vỏ thanh nhiên liệu:

- Hơi ẩm có sẵn trong viên gốm từ quá trình chế tạo nhiên liệu;

- Nước và các sản phẩm phân hủy phóng xạ nước xâm nhập qua kẽ nứt vỏ thanh trong quá trình làm việc của lò phản ứng hạt nhân.

b. Phía ngoài vỏ thanh nhiên liệu:

- Nước với vai trò là chất tải nhiệt và làm chậm nơtron; - Oxy, H2O2 từ quá trình phân hủy phóng xạ nước:

H2O → H + OH (2.11)

2H2O → H2 + H2O2 (2.12)

2H2O2 → 2H2O + O2 (2.13)

Do ái lực lớn của oxi với zirconi, ngay tại nhiệt độ phòng, trên bề mặt zirconi đã hình thành một lớp oxit chiều dày khoảng 2 - 5 nm với tốc độ phát triển cao, kích thước hạt oxit mịn. Độ hòa tan của oxi trong α zirconi là 28,6% tại 500 oC (Hình 2.18).

37

Hình 2. 18. Giản đồ pha Zr-O [11]

Tại áp suất thường zirconi oxit có ba dạng thù hình: Monoclinic (ổn định ở nhiệt độ phòng), tetragonal (1.205 oC) và cubic (2.370 oC). Oxit zirconi có nhiệt độ nóng chảy 2.680 oC.

Khi chuyển từ zirconi kim loại sang oxit có sự tăng 50 - 60% thể tích, dẫn tới sự tạo thành ứng suất nén trong lớp oxit và ứng suất kéo trong kim loại. Do đó nếu chiều dày màng oxit lớn hơn một giá trị tới hạn sẽ hình thành vết nứt trên bề mặt oxit. Sự hình thành ZrO2 trong các điều kiện khác nhau được đưa ra trên Hình 2.19.

Cơ chế oxy hóa vỏ bọc tương tự như với kim loại nói chung được đưa ra trong Hình 2.20 dưới đây.

Quá trình oxy hóa diễn ra theo các bước sau:

- Trước tiên oxy được hấp phụ trên bề mặt kim loại;

- Oxy phản ứng với kim loại nền tạo thành các đảo oxit; một số nguyên tử oxy khuếch tán vào kim loại;

38

- Các đảo oxit nối với nhau và hình thành một lớp bao phủ trên bề mặt kim loại;

- Lớp oxit phát triển nhờ quá trình khuếch tán của các ion kim loại và oxy; - Các nứt gẫy, lỗ trống và sai hỏng hình thành trong lớp oxit và đẩy mạnh quá trình khuếch tán.

Hình 2. 19. Sơ đồ vi cấu trúc của zirconi oxit tạo thành trong các điều kiện khác nhau [8] (a) nước ở 350 oC, (b) oxi ở 400 oC và 100bar, (c) hơi nước ở 400 oC

Hai dạng ăn mòn khác nhau được quan sát khi chiếu xạ trong lò phản ứng: - Dạng tạo lớp oxit đồng nhất thường xảy ra với các lò phản ứng nước áp lực được cung cấp đủ hydro hòa tan để ngăn cản sự phân ly của nước. Lượng hydro đủ để phản ứng phân ly không xảy ra theo chiều thuận. Khi các màng oxit trở nên rất dày trên 100 μm thì sự phá vỡ lớp oxit xảy ra. Một số vỏ bọc vỡ lớp oxit có độ dày thấp hơn. Ăn mòn đồng nhất là cơ chế trội quan sát được trong các lò phản ứng

39

PWR. Lớp oxit phát triển đồng nhất trên mặt ngoài của vỏ nhiên liệu. Khả năng chống ăn mòn phụ thuộc vào thành phần hóa học và cấu trúc vi mô của Zircaloy. Mẫu ăn mòn đồng nhất quan sát được như trong Hình 2.21.

40

Hình 2. 21. Ăn mòn tạo lớp đồng nhất sau 1 và 3 chu kỳ [2]

- Ăn mòn dạng hạch (nốt) thường xảy ra trong các lò phản ứng BWR nơi mà sự phân ly nước và sự sôi cho phép oxy tích lũy trong nước. Các hạt nhỏ thường có dạng hạt đậu và tạo nhân rất sớm trong quá trình phơi xạ lò phản ứng. Quá trình ăn mòn dạng hạch có thể chia thành 4 bước (Hình 2.22). Đầu tiên là sự hình thành oxit đồng nhất ZrO2 hoặc ZrO2-x, sau đó lớp oxit dày lên, nứt gẫy của các lớp oxit dẫn đến sự thâm nhập của H2O vào bề mặt vỏ thanh nhiên liệu. Cuối cùng, sự hình thành và nứt vỡ lặp đi lặp lại của ZrO2 tạo ra các vùng ZrO2 rỗng xốp cao dạng cột.

Vì tác nhân oxy hóa chủ yếu là nước (dạng hơi), phản ứng oxy hóa tạo ra một lượng lớn khí hydro. Tốc độ sinh nhiệt do phản ứng oxy hóa trong vỏ bọc trở thành đáng kể ở nhiệt độ cao hơn 1.200 oC. Tại nhiệt độ này, nhiệt oxy hóa trở thành lớn hơn nhiệt phân rã để trở thành nguyên nhân chính làm tăng nhiệt độ nhiên liệu. Phản ứng oxy hóa bên trong lớp vỏ thanh làm tăng nhanh nhiệt độ trong nhiên liệu và chuyển vỏ bọc về dạng oxit ZrO2. Sự tăng trưởng nhanh màng oxit và sự hòa tan gia tăng của oxi trong pha β-Zr tại nhiệt độ trên 1.200 oC làm mất tính dẻo trong vỏ bọc là cơ sở đặt ra giới hạn chuẩn nhiệt độ vỏ bọc tối đa trong sự cố LOCA cơ sở là 1.204 oC, đồng thời mức độ oxy hóa cực đại trong lớp vỏ thanh nhiên liệu được giới hạn là 17% độ dày ban đầu của nó.

Những nghiên cứu về quá trình ăn mòn hợp kim Zr-Nb được thực hiện với biến đổi khá rộng thành phần Nb. Tuy nhiên đáng chú ý là những nghiên cứu quá trình ăn mòn của 3 loại hợp kim được sử dụng rộng rãi trong lò phản ứng là Zr-

41

1%Nb (E110, M5), Zr-2,5%Nb (E125), Zr-1%Sn-1%Nb-0,1-0,4%Fe (E635, Zirlo). Một số kết quả thu được từ những nghiên cứu này là:

- Quá trình chế tạo vật liệu (cán kéo, gia công nguội và xử lý nhiệt) ảnh hưởng tới sự phân bố của pha β-Zr, làm tăng khả năng chống ăn mòn của hợp kim Zr-Nb, đặc biệt khi xử lý nhiệt tại nhiệt độ thấp hơn nhiệt độ monotectoid (590 - 610 oC, tùy thuộc hàm lượng oxy);

- Hóa học nước, đặc biệt hàm lượng oxy của chất làm mát ảnh hưởng nhiều đến quá trình ăn mòn hợp kim Zr-Nb, khi hàm lượng oxy ≥15ppb. Sự tăng quá trình ăn mòn hợp kim Zr-Nb trong nước oxy hóa liên quan đến sự chuyển NbO2 thành Nb2O5, dẫn đến quá trình giãn nở thể tích;

Hình 2. 22. Cơ chế ăn mòn dạng hạch [2]

- Thiếc làm tăng độ dày màng oxit trên bề mặt ngoài vỏ bọc Zr-Nb. Với hàm lượng Sn 0,2 - 0,3% quá trình ăn mòn hợp kim Zr-Nb tăng nhanh, nhưng khi hàm

42

lượng Sn >0,5% thì lại ít nhạy cảm với môi trường khi có mặt LiOH hàm lượng cao;

- Hợp kim Zr-Nb hấp thụ hydro thấp hơn so với Zircaloy;

- Nb làm giảm quá trình ăn mòn hợp kim Zr-Nb trong lò PWR. Nhiều hợp kim Zr-Nb đáp ứng nhu cầu làm việc của nhiên liệu có độ cháy cao. Hợp kim Zr- 2,5%Nb xử lý đúng có khả năng chống ăn mòn cao nhất trong lò PWR. Khi hàm lượng kim loại chuyển tiếp trong hợp kim >0,25% thì tác dụng chống ăn mòn giảm đi. Quá trình ăn mòn trong dung dịch LiOH mạnh hơn so với trường hợp Zircaloy.

Nhìn chung, đối với lò PWR, hợp kim Zr-Nb là hợp kim quan trọng nhất hiện nay và có khả năng thay thế Zircaloy.

Trong môi trường nước (là chất tải nhiệt đồng thời là chất làm chậm nơtron) của lò phản ứng, tốc độ ăn mòn tăng dưới tác dụng bức xạ. Cơ chế tác động bức xạ

Một phần của tài liệu Phân tích các đặc trưng của thanh nhiên liệu sử dụng trong lò phản ứng hạt nhân VVER AES2006 (Trang 39)

Tải bản đầy đủ (PDF)

(108 trang)