VẬT LIỆU TRÊN CƠ SỞ TITAN DIOXIT

Một phần của tài liệu Luận án tiến sĩ hóa học nghiên cứu tổng hợp, đặc trưng và một số ứng dụng (Trang 27)

I.2.1. Khái niệm titan đioxit

TiO2 là chất rắn màu trắng, có trọng lượng riêng từ 4,13 – 4,25 g/cm3, nóng chảy ở nhiệt độ cao gần 1800 oC, không tan trong nước, không tan trong các axit sunfuric và axit clohidric ngay cả khi đun nóng.

TiO2 tồn tại dưới dạng tinh thể, có 3 cấu trúc tinh thể chính là dạng rutile, anatase và brookite. Trong đó dạng anatase và rutile phổ biến hơn. Ở nhiệt độ từ 600 oC – 1100 oC thì các dạng anatase và brookite sẽ chuyển thành rutile. Dạng anatase và rutile có khả năng xúc tác quang tốt hơn nhiều so với dạng brookite.

Tinh thể Rutile thuộc hệ tứ phương, cấu tạo từ các đơn vị bát diện TiO 62góp chung cạnh và góc. Pha rutile có độ rộng khe năng lượng là 3,05 eV, khối lượng riêng 4,2 g/cm 3, cấu trúc tinh thể TiO2 dạng rutile được mô tả ở hình 10.A.

Anatase có cấu trúc tứ phương giãn dài với các bát diện TiO62- không đều đặn. Anatase có thể chuyển thành dạng Rutile ở các điều kiện nhiệt độ thích hợp. Anatase là dạng có hoạt tính mạnh nhất trong 3 dạng, độ rộng khe năng lượng là

3,25 eV, khối lượng riêng là 3,84 g/cm3. Hình I.10(B) là cấu trúc của TiO2 dạng

Brookite là mạng lưới cation hình thoi với cấu trúc phức tạp hơn, thường hiếm gặp và có hoạt tính xúc tác quang kém. Brookite có năng lượng vùng cấm 3 , 4 eV, khối lượng riêng 4,1 g/cm 3.

Cấu trúc của rutil và anatase có thể được mô tả bằng các chuỗi bát diện TiO62- . Hai cấu trúc tinh thể này khác nhau ở sự biến dạng của các bát diện và bởi sự sắp xếp các chuỗi bát diện. Mỗi ion Ti4+ được bao quanh bởi 6 ion O2- của hình bát diện. Trong cấu trúc rutile hình bát diện không đều hơi bị biến dạng thoi còn trong cấu trúc anatase bị biến dạng lớn hơn do đó tính đối xứng kém hơn.

Trong cấu trúc rutile, mỗi hình bát diện tiếp xúc với mười hình bát diện bên cạnh (hai hình bát diện chung cạnh oxi và tám hình bát diện chung đỉnh oxi). Đa diện phối trí của TiO2 được mô tả ở hình I.10.[48]

anatase.

A B C

Hình I.10. Đa diện phối trí của TiO2.

Do sự gắn kết đa diện phối trí khác nhau của hai dạng thù hình này dẫn đến sự khác nhau về một số hằng số vật lý trình bày dưới đây:

Bảng I.5. Các hằng số vật lý của TiO2

Tính chất Dạng rutile Dạng anatase Dạngbrookite

Khoảng cách Ti-O (Å) 1,934/1,980 1,949/1,980 - Khoảng cách Ti-Ti (Å) 3,57/2,96 3,79/3,04 - Hằng số mạng (Å) a = b = 4,593 c = 2,959 a = b = 3,784 c = 9,515 a = 5,456 b = 9,182 c = 5.143

Năng lượng vùng cấm (eV) 3,0 3,2 -

Gof (Kcal/mol) - 212,6 - 211,4 -

I.2.2. Tính chất của TiO2

I.2.2.1. Tính chất vật lí

Các tính chất vật lí của TiO2 được trình bàyở bảng I.5.

Bảng I.6. Một số tính chất vật lí của TiO2 dạng Anatase và Rutile

TT Tính chất vật lí Anatas Rutil

1 Cấu trúc tinh thể Tứ phương Tứ phương

2 Tonc (oC) 1800 1850

3 Khối lượng riêng (g/cm3) 3,84 4,20

4 Độ cứng Mohs 5,5-6,0 6,0-7 , 0

7 Nhiệt dung riêng (Cal/mol. oC) 12,96 13 , 2 8 Mức năng l ượng vùng cấm (eV) 3,25 3 , 05

I.2.2.2. Tính chất hóa học

TiO2 ở dạng có kích thước micromet rất bền về hóa học, không tan trong các axit. Tuy nhiên, khi đưa TiO2 về dạng kích thước nanomet, TiO2 có thể tham gia một số phản ứng với axit và kiềm mạnh. Các dạng oxit, hydroxit và các hợp chất của Ti (IV) đều có tính lưỡng tính.

a. Tính xúc tác quang của nano TiO2 (adsbygoogle = window.adsbygoogle || []).push({});

Dưới tác dụng của một photon có năng lượng ≈ 3,2eV tương ứng với ánh sáng có bước sóng khoảng 387,5 nm (dải bước sóng UV-A) sẽ xảy ra quá trình như sau:

TiO2 e-cb + h+vb

Khi các lỗ trống quang sinh mang điện tích dương (h+VB) xuất hiện trên vùng hóa trị, chúng sẽ di chuyển ra bề mặt của hạt xúc tác. Trong môi trường nước xảy ra phản ứng tạo gốc hydroxyl OH* trên bề mặt hạt xúc tác như phản ứng dưới đây:

h+vb + H2O → OH* + H+ h+vb + OH- → OH* (*)

Ion OH- lại có thể tác dụng với h+vb trên vùng hóa trị tạo ra thêm gốc OH* theo phương trình (*). Mặt khác, các e-cb có xu hướng tái kết hợp với các h+vb kèm theo giải phóng nhiệt hoặc ánh sáng: e-cb + h+vb → nhiệt, ánh sáng.

Do đó cơ chế phản ứng oxi hóa trên titan đioxit được đề xuất diễn ra như sau [49]

Hình I.11. Các quá trình diễn ra trong hạt bán dẫn khi hấp thụ photon.

2: Sự tái hợp electron và lỗ trống trong khối. 3: Sự tái hợp electron và lỗ trống trên bề mặt. 4: Sự di chuyển electron trong khối.

5: Electron di chuyển tới bề mặt và tương tác với chất nhận (acceptor). 6: Lỗ trống di chuyển tới bề mặt và tương tác với chất cho ( donor ).

I.3. VẬT LIỆU KHUNG HỮU CƠ – KIM LOẠI

Trong khi những nghiên cứu về zeolit vật liệu vi mao quản có nhiều khả năng ứng dụng vào các lĩnh vực khác nhau vẫn đang được tiếp tục thực hiện thì đã xuất hiện một hướng phát triển mới các vật liệu mao quản được gọi là vật liệu khung hữu cơ kim loại (metal organic frameworks - MOFs). Đây là một hướng mới trong lĩnh vực xúc tác và khoa học vật liệu thu hút sự quan tâm của các nhà khoa học nhiều nước trên thế giới trong hơn một thập kỷ qua.

Nếu zeolit là loại vật liệu vô cơ, thì hướng phát triển mới này nhằm vào sự kết hợp giữa vô cơ, hữu cơ bằng việc liên kết ion kim loại hoặc cụm ion kim loại và các phối tử hữu cơ đa chức, tạo thành loại vật liệu cũng có hệ thống mao quản phát triển với các cửa sổ đều đặn, diện tích bề mặt rất cao.

Báo cáo về loại hình này vật liệu được biết đến ít nhất từ năm 1959, khi Kinoshita mô tả cấu trúc tinh thể của bis (adiponitrilo) đồng ( I ) nitrat. Tới những năm 1990 đề tài này được tái khám phá, đầu tiên phải kể đến là các tác phẩm của Robson và sau đó bởi Yaghi và các nhà nghiên cứu tại phòng thí nghiệm trường đại học California người đặc biệt thành công nổi tiếng với MOF-5 [50].

Chính sự phát triển của đặc tính kỹ thuật trên bề mặt, mô hình phân tử và phương pháp tổng hợp cao cấp đã biến đổi phương pháp tổng hợp vật liệu từ các phương pháp “thử-và-sai” dựa trên kiến thức hóa học, tích lũy kinh nghiệm trở thành một khoa học đa ngành cho phép đạt được thiết kế phân tử thích hợp, bằng cách này khung mạng kim loại- hữu cơ được tạo ra.

I.3.1. Vật liệu khung hữu cơ kim loại

Polyme phối trí (coordination polymer - CPs) là vật liệu rắn hình thành bởi một mạng lưới mở rộng của các ion kim loại (hoặc cụm ion kim loại) phối hợp với

một nhóm đặc biệt các CPs gọi là khung hữu cơ kim loại (Metal -organic frameworks - MOFs).

Như vậy, theo định nghĩa trên, Metal-organic frameworks ( MOFs ) là một phân lớp của họ vật liệu CPs. Gần đây, MOFs được quan tâm nghiên cứu do đồng thời xuất hiện ba đặc điểm quan trọng: tinh thể, đặc điểm cấu trúc mao quản và sự tồn tại của tương tác kim loại-phối tử mạnh. Sự kết hợp độc đáo đặc tính hóa học của ion kim loại hoặc đặc tính riêng của phối tử hữu cơ, MOFs tạo nên một lớp vật liệu rất đặc biệt.

Có thể hiểu một cách đơn giản, vật liệu khung kim loại - hữu cơ là một mạng không gian đa chiều, được tạo nên từ các nút kim loại hoặc oxit kim loại và được kết nối bằng các phối tử là những axit hữu cơ đa chức thành khung mạng, để lại những khoảng trống lớn bên trong thông ra ngoài bằng cửa sổ có kích thước nano đều đặn.

I.3.2. MIL-101

MIL-101 là vật liệu tinh thể thuộc họ vật liệu MOFs. MIL-101 được tổng hợp từ nguồn kim loại là muối Cr(III) (ở đây sử dụng muối Cr(NO3)3.9H2O) và axit terephtalic bằng phương pháp thuỷ nhiệt trong khoảng 9 giờ ở nhiệt độ 220 oC được công bố đầu tiên bởi nhóm nhà khoa học người Pháp mà đứng đầu là G. Férey tại Viện Vật liệu Lavoisier (MIL là viết tắt của Matériaux de l'Institut Lavoisier) năm 2009 [51].

Do có kích thước mao quản lớn (ø ~ 3,4nm) và diện tích bề mặt lớn (3000 - 5000m2/g), nên hiện nay MIL-101 đang là một trong những vật liệu MOFs điển hình với các tiềm năng ứng dụng trong nhiều lĩnh vực bao gồm chất mang xúc tác, chất hấp phụ và lưu trữ khí.

I.3.3. Ứng dụng của vật liệu MOFs

I.3.3.1. Chế tạo vật liệu hấp phụ, lưu trữ khí

Với diện tích bề mặt riêng lớn, các vật liệu MOFs được biết đến với khả năng lưu trữ một lượng lớn khí. Hấp thụ khí gây hiệu ứng nhà kính CO2 được đặt ra cho ngành công nghệ hóa học xanh nhằm giải quyết các vấn đề thay đổi khí hậu. Trong công nghiệp, việc thu giữ khí CO2 thường được thực hiện bằng dung dịch nước của amin-alcol, sau đó CO2 giải thoát bằng cách nâng nhiệt độ. Hiện nay có rất nhiều báo cáo cho thấy khả năng hấp phụ tốt CO2 của các vật liệu MOFs như: MIL-101, 1m3 vật liệu hấp phụ 400 m3 CO2 [51];

Những phân tử H2 không những hấp phụ tốt trên bề mặt MOFs mà còn có thể giải phóng tốt ở áp suất riêng phần thấp, điều này giúp giải quyết vấn đề năng lượng sạch cho tương lai, thay thế xăng dầu. MOF-5 có thể hấp phụ được 45mg H2/g, hay 4,5% trọng lượng ở 78 K [52]. Các nghiên cứu về việc lưu trữ khí metan bằng vật liệu MOFs trong việc phát triển vật liệu an toàn cũng tỏ ra hiệu quả và an toàn hơn.

I.3.3.2. Chế tạo xúc tác

Các tâm kim loại được thay đổi dễ dàng trong khung mạng MOFs hứa hẹn nhiều ứng dụng to lớn trong chế tạo xúc tác. Bên cạnh đó, diện tích bề mặt lớn là điều kiện thuận lợi cho việc phân tán các tâm xúc tác trên nền vật liệu MOFs. Khả năng quan trọng của vật liệu MOFs chính là chế tạo các xúc tác bất đối (xúc tác chiral). Vật liệu [ Cd3Cl6(L5)3.4DMF.6MeOH.3H2O] trong đó L5 là (R)-6,6’-dichloro-2,2’- dihydroxy-

1,1’-binaphthyl-4,4’-bipyridine; DMF là N,N-dimetyl formamide được tạo ra và xử lý bằng TBOT (Tetrabutyl octotitanat) ứng dụng trong phản ứng cộng hợp dietyl kẽm vào các aldehyde đạt được độ chọn lọc đồng phân quang học tới 93% [53]. Mức độ này cũng tương đương với các xúc tác đồng thể khác.

I.3.3.3. Chế tạo màng lọc (adsbygoogle = window.adsbygoogle || []).push({});

Dựa vào việc hấp phụ chọn lọc kích thước của vật liệu MOFs, có thể chế tạo màng lọc cho việc phân tách hỗn hợp, đáp ứng các yêu cầu về tinh chế và làm sạch. Nghiên cứu tạo màng tách từ vật liệu được kết nối bằng porphyrin và pyrazine, màng được chế tạo bằng cách dát huyền phù lên màng polyeste. Nhờ máy AFM người ta nhận thấy, phân tử có đường kính 13A 0 có thể thấm qua màng của vật liệu kết nối

bằng porphyrin, còn các phân tử nhỏ hơn , đường kính 5,7A0 thì thấm qua màng pyrazine.

I.4. CÁC PHƯƠNG PHÁP TỔNG HỢP VẬT LIỆU CẤU TRÚC NANOCHỨA TITANCHỨA TITAN CHỨA TITAN

I.4.1. Phương pháp thủy nhiệt ( Hydrothermal treatment )I.4.1.1. Giới thiệuI.4.1.1. Giới thiệu I.4.1.1. Giới thiệu

Thuật ngữ “thủy nhiệt” xuất phát từ khoa học trái đất, bao gồm các phương pháp đòi hỏi sử dụng nước ở áp suất cao (từ 1atm đến hàng nghìn atm) và nhiệt độ cao (từ 100 oC -1000 oC) [54]. Đặc trưng của việc nghiên cứu thủy nhiệt cần một dụng cụ cho phép thực hiện phản ứng ở nhiệt độ cao, áp suất cao gọi là “ autoclave ” hay “ bombs ”. Hiện tại, có nhiều loại autoclave để đáp ứng nhu cầu sử dụng trong các khoảng áp suất- nhiệt độ khác nhau.

Phương pháp thuỷ nhiệt tức là phương pháp dùng nước dưới áp suất cao và nhiệt độ cao hơn điểm sôi bình thường. Lúc đó nước thực hiện hai chức năng: thứ nhất vì nó ở trạng thái lỏng hoặc hơi nên đóng chức năng môi trường truyền áp suất, thứ hai nó đóng vai trò như một dung môi có thể hoà tan một phần chất phản ứng dưới áp suất cao, do đó phản ứng được thực hiện trong pha lỏng hoặc có sự tham gia một phần của pha lỏng hoặc pha hơi. Thông thường, áp suất pha khí ở điểm tới hạn chưa đủ để thực hiện quá trình này. Vì vậy, người ta thường chọn áp suất cao hơn áp suất hơi cân bằng của nước để tăng hiệu quả của quá trình điều chế. Nhiệt độ, áp suất hơi nước và thời gian phản ứng là ba nhân tố vô cùng quan trọng quyết định hiệu quả của phương pháp thủy nhiệt này. Cũng có thể sử dụng các dung môi phân cực như NH3, dung dịch nước chứa HF, CO2 hoặc các axit, bazơ khác để điều chỉnh pH hoặc các dung môi không phân cực để mở rộng khả năng ứng dụng của phương pháp tổng hợp này. Tuy nhiên, cách làm này có một nhược điểm là dễ làm cho nồi phản ứng bị nhiễm độc và ăn mòn. Thông thường, đối với mỗi loại tiền chất, người ta thường đặt sẵn các thông số vật lý và hóa học khác nhau trong suốt quá trình điều chế. Điều này tương đối phức tạp do các thông số này bị ảnh hưởng lẫn nhau và sự ảnh hưởng qua lại này vẫn chưa được giải quyết một cách thỏa đáng. Vì rằng các quá trình thuỷ nhiệt được thực hiện trong bình kín nên thông tin quan trọng nhất là giản đồ sự phụ thuộc áp suất hơi nước trong điều kiện đẳng tích (Hình I.13).

Hình I.13. Sự phụ thuộc áp suất hơi trong điều kiện đẳng tích

Thủy nhiệt là một trong những phương pháp tốt để điều chế vật liệu cấu trúc nano như: zeolit, mao quản trung bình (MQTB), nano titan đioxit và gần đây nhất là vật liệu khung hữu cơ kim loại.

I.4.1.2. Ưu điểm

Phương pháp thủy nhiệt có ưu điểm so với các phương pháp khác ở chỗ:

- Có thể điều chỉnh được kích thước, hình dáng, thành phần hóa học của hạt bằng điều chỉnh nhiệt độ, hóa chất ban đầu, cách thức thực hiện phản ứng.

- Là phương pháp tổng hợp ở nhiệt độ tương đối thấp, không gây hại môi trường vì phản ứng được tiến hành trong một hệ kín.

-Sản phẩm được hình thành trực tiếp từ dung dịch, sản phẩm có thể thu theo từng mẻ hoặc trong các quá trình liên tục.

I.4.2. Phương pháp sol-gel (Sol-gel)

Phương pháp sol-gel do R.Roy đề xuất năm 1956 cho phép trộn lẫn các chất ở quy mô nguyên tử do đó sản phẩm thu được có độ đồng nhất và độ tinh khiết cao,

Cơ chế của phương pháp này được cho là diễn ra theo các bước sau: I.4.2.1. Sự hình thành sol:

Đầu tiên các ion 4kim loại tạo phức với phối tử vòng càng là axit citric. Trong quá trình khuấy trộn, bay hơi dung môi, các phức đơn nhân ngưng tụ với nhau thành tập hợp phức đa nhân. Mạng lưới phức đa nhân phát triển thành các hạt sol có kích thước micromet. Sol là trạng thái phân bố dị thể đồng đều các hạt rắn trong chất lỏng.

I.4.2.2. Sự hình thành gel:

b ề mặt ri êng l ớn, ph â

HìnhI.14. Sơ đồ

n b ố kích th ư ớc hạt hẹp [ 55 , 56 ] .

chung của phương pháp sol –gel điều chế vật liệu nano

Các hạt sol tiếp tục lớn lên, ngưng tụ thành mạng lưới không gian ba chiều. Lúc này, trạng thái lỏng được phân tán đồng đều trong pha rắn. Bằng phương pháp sol-gel, không những tổng hợp được oxit siêu mịn với độ đồng nhất và độ tinh khiết cao, mà còn có thể tổng hợp được các tinh thể có kích thước cỡ nano, các pha thủy tinh, thủy tinh-gốm, mà những phương pháp nóng chảy không thể tổng hợp được. Do đó, trong những năm gần đây phương pháp sol-gel đã trở thành một trong những phương pháp tổng hợp oxit quan trọng nhất trong lĩnh vực khoa học vật liệu.

Lợi dụng những ưu điểm lớn của phương pháp sol -gel, hàng loại vật liệu biến tính TiO2 được chế tạo thành công với hàm lượng và kích thước mong muốn. Sơ đồ chung của quá trình có thể mô tả như sau:

I.4.3. Phương pháp vi nhũ ( Micro-emulsion method)

Một phần của tài liệu Luận án tiến sĩ hóa học nghiên cứu tổng hợp, đặc trưng và một số ứng dụng (Trang 27)