Phương pháp phổ tán xạ Raman

Một phần của tài liệu Luận án tiến sĩ hóa học nghiên cứu tổng hợp, đặc trưng và một số ứng dụng (Trang 51)

I.5.4.1. Nguyên tắc

Phương pháp quang phổ Raman được phát triển rất nhanh để nghiên cứu tính chất quang của vật liệu. Cho đến nay, nhiều kỹ thuật đo đã được ứng dụng với những thành tựu mới nhất của của công nghệ laser và công nghệ điện tử tin học: macroraman, microraman... đo một kênh hoặc nhiều kênh, đo trực tiếp hay đo từ xa với sợi quang học. Đây là một phương pháp nghiên cứu cấu trúc định xứ, nó đã được ứng dụng trong nhiều lĩnh vực: vật lý, hoá học, vật liệu, địa chất, y học, dược học.... Khi ánh sáng đi qua một vật nào đó, một phần ánh sáng bị lệch đi so với hướng ban đầu, đó là hiện tượng tán xạ. Tán xạ này gồm hai phần: tán xạ Rayleigh : ánh sáng tán xạ đàn hồi theo mọi hướng và tán xạ Raman: ánh sáng tán xạ không đàn hồi.

Theo định luật Bolzmann, ở điều kiện nhiệt độ môi trường, hầu hết phân tử ở trạng thái dao động cơ bản, chỉ có một số lượng rất nhỏ nằm ở trạng thái dao động kích thích. Khi phân tử được chiếu sáng bới ánh sáng đơn sắc với năng lượng h o, trong quá trình va chạm không đàn hồi của lượng tử ánh sáng với phân tử, xác suất truyền năng lượng của lượng tử cho phân tử để phân tử nhảy lên trạng thái kích thích, sẽ cao hơn so với quá trình ngược lại. Lượng tử ánh sá ng bị tán xạ và có năng lượng cao hơn hoặc thấp hơn theo công thức sau:

h R =h o h s (I.7)

Trong đó h s là năng lượng dao động. Vạch Stokes sẽ có năng lượng tán xạ thấp hơn, bằng h R =h o - h s. Vạch anti-Stokes có năng lượng tán xạ cao hơn, và bằng h R =h o + h s.

Phổ Raman ghi nhận tín hiệu h R, cung cấp hình ảnh bổ sung, đặc trưng cho dao động của phân tử.

Phép đo phổ tán xạ Raman là phép đo vô cùng quan trọng trong nghiên cứu cấu trúc vật liệu. Đây là phép đo không gây phá huỷ mẫu, cho phép xác định kích thước của cấu trúc nano và có thể xác định các mối liên kết trên bề mặt vật liệu. Phổ Raman chỉ ra các vạch đặc trưng, tiêu biểu cho các nhóm nguyên tử và xác định tại tần số nhất định. Cường độ của vạch phổ thường tỷ lệ với nồng độ của từng thành phần riêng biệt của hỗn hợp. Ngoài ra, bằng phép đo phổ Raman có thể xác định được nhiệt độ của mẫu trong quá trình ủ laser cũng như trong quá trình ủ nhiệt, xác định động học quá trình chuyển pha từ pha vô định hình sang pha tinh thể cấu trúc nano dưới hiệu ứng ủ nhiệt.

Một số thông số khác ảnh hưởng đến hình dạng của phổ Raman như: sự phân bố kích thước hạt làm phổ được nở rộng, sức căng lớn trong vật liệu cũng gây nên sự thay đổi của tần số tại điểm vùng Brillouin.

I.5.4.2. Phân tích định tính

Như phần lý thuyết đã nêu, những dao động không xuất hiện trong phổ hồng ngoại thường xuất hiện trong phổ Raman và ngược lại, do đó người ta thường dùng kết hợp cả hai phương pháp để bổ trợ cho nhau. Ngoài ra quang phổ Raman cũng có ưu thế riêng của nó, chẳng hạn có thể ghi mẫu đơn giản hơn bằng hồng ngoại, cuvet chỉ cần làm bằng ống thủy tinh, có thể ghi dung môi là nước, axit… và ghi ở nhiệt độ cao.

Tần số hấp thụ đặc trưng của các nhóm chức hữu cơ cũ ng gần giống như trong quang phổ hồng ngoại, nhưng về cường độ thì chúng có thể thay đổi khác nhau .

Phương pháp phổ Raman rất thuậnlợi để nghiên cứu các chất vô cơ vì phần lớn các chất vô cơ chỉ tan trong nước mà phổ Raman của các chất có thể đo trong dung dịch nước. Ngoài ra vùng phổ từ 700 đến 100 cm-1 của các hợp chất vô cơ lại có cường độ tương đối mạnh trong khi ở phổ hồng ngoại lại rất yếu.

I.5.4.3. Phân tích định lượng

tích định lượng phổ Raman là chiều cao của các đỉnh phổ thay đổi tuyến tính với nồng độ dung dịch, trong khi đó ở phổ hồng ngoại thì có mối quan hệ logarit giữa nồng độ và ánh sáng truyền qua. Do đó độ chính xác trong phân tích định lượng bằng phương pháp phổ Raman cao hơn bằng phổ hồng ngoại.

Điều thuận lợi thứ hai là phương pháp phổ Raman đơn giản hơn phương pháp phổ hồng ngoại là do trong phổ Raman ít có các đỉnh phổ xen phủ nhau do đó việc tìm một vạch riêng rẽ có thể tiến hành phân tích hỗn hợp với nhiều hợp phần.

I.5.4.5. Thực nghiệm và thiết bị đo

Tất cả các phổ Raman đều được ghi trên máy Vi quang phổ Raman LABRAM-1B của Hãng Jobin-Yvon (Cộng hoà Pháp). Hệ đo LABRAM-1B là hệ đo tích phân được gắn với kính hiển vi quang học Olimpus BX 40.

I.5.5. Phương pháp phổ hấp thụ tử ngoại và khả kiếnI.5.5.1. Nguyên tắcI.5.5.1. Nguyên tắc I.5.5.1. Nguyên tắc

Năng lượng của bức xạ điện từ được xác định bởi phương trình sau: E = hν (I.8)

ở đây E là năng lượng (Jun), h là hằng số Planck (6,62x10-34 J.s), và ν là tần số (s-1). Bức xạ điện từ có thể được xem là sự kết hợp trường điện và từ được truyền qua không gian dưới dạng sóng. Giữa tần số (ν,s) , bước sóng (λ,m) và tốc độ ánh sáng (c = 3x108 m.s-1) liên hệ bằng biểu thức:

h = c/ λ (I.9)

Trong phổ UV-Vis, bước sóng thường được biểu diễn bằng đơn vị nanomet (nm). Khi bức xạ tương tác với vật chất, các quá trình xẩy ra bao gồm phản xạ, tán xạ, hấp thụ, huỳnh quang và phát quang, phản ứng quang hoá (hấp thụ và bẻ gãy liên kết). Trong nghiên cứu phổ UV-Vis thì chỉ quan tâm đến quá trình hấp thụ xẩy ra.

Ánh sáng là một dạng năng lượng. Sự hấp thụ ánh sáng gây ra sự tăng năng lượng của phân tử (nguyên tử). Năng lượng toàn bộ của phân tử được biểu diễn như là tổng số của năng lượng điện tử, dao động, quay:

Etoàn bộ = Eđiện tử + Edao động+ Equay (I.10)

Trong một số phân tử hay nguyên tử, các photon của ánh sáng UV - Vis có đủ năng lượng gây ra sự chuyển dịch giữa các mức năng lượng điện tử khác nhau. Bước sóng

một điện tử từ mức năng lượng thấp đến mức năng lượng cao hơn. Các bước nhảy này tạo ra dải hấp thụ tại các bước sóng đặc trưng ở các mức năng lượng của các dạng hấp thụ.

I.5.5.2. Phân tích định lượng

Phương pháp phổ hấp thụ tử ngoại và khả kiến được sử dụng rất thuận lợi và phổ biến trong phân tích định lượng các dạng đơn chất và hỗn h ợp được gọi tên là phươngười pháp trắc quang. Cơ sở của phương pháp vẫn dựa vào định luật Lambert- Beer, thiết lập mối liên quan giữa mật độ quang và nồng độ chất trong dung dịch. Nói chung phương pháp trắc quang có độ nhạy cao, sai số có thể đạt ± 0,2 đến ± 1 %, so với các phương pháp khác độ chính xác của nó chưa mỹ mãn nhưng vẫn được sử dụng phổ biến vì sự thuận lợi.

I.5.5.3.Thực nghiệm

Trong luận án này, thực hiện việc đo phổ hấp thụ electron UV-Vis trên máy GBC Instrument-2885 trong vùng từ 200-700 nm tại Trường ĐH Sư Phạm Hà Nội.

I.5.6. Phương pháp hiển vi điện tử quét ( SEM)I.5.6.1. Nguyên tắcI.5.6.1. Nguyên tắc I.5.6.1. Nguyên tắc

Nguyên tắc cơ bản của phương pháp SEM là dùng tia điện tử để tạo ảnh mẫu nghiên cứu. Ảnh đó khi đến màn hình quang có thể đạt độ phóng đại yêu cầu. Chùm tia điện tử được tạo ra từ catot qua 2 tụ quay sẽ được hội tụ lên mẫu nghiên cứu. Khi chùm tia điện tử đập vào bề mặt của mẫu sẽ phát ra các điện tử phát xạ thứ cấp. Mỗi điện tử phát xạ này qua điện thế gia tốc vào phần thu và biến đổi thành một tín hiệu ánh sáng. Chúng được khuếch đại, đưa vào mạng lưới điều khiển tạo độ sáng trên màn ảnh. Độ sáng, tối trên màn ảnh phụ thuộc vào số điện tử thứ cấp phát ra từ mẫu nghiên cứu và phụ thuộc vào hình dạng bề mặt mẫu nghiên cứu.

Phương pháp SEM cho phép xác định được kích thước trung bình và hình dạng của tinh thể zeolit nói riêng và các vật liệu có cấu trúc tinh thể khác nói chung.

I.5.6.2. Thực nghiệm và thiết bị đo

Mẫu được rửa sạch bằng etanol, phân tán mỏng trên đế và sấy khô. Các mẫu được chụp tại Viện Khoa Học Vật liệu-Viện Khoa học và Công nghệ Việt Nam.

I.5.7.1. Nguyên tắc

Kính hiển vi điện tử truyền qua là một thiết bị hình trụ cao khoảng 2m, có một nguồn phát xạ điện tử trên đỉnh (súng điện tử) để phát ra chùm điện tử. Chùm này được tăng tốc trong môi trường chân không cao, sau khi đi qua tụ kính, chùm điện tử tác động lên mẫu mỏng, tùy thuộc vào từng vị trí và loại mẫu mà chùm điện tử bị tán xạ ít hoặc nhiều. Mật độ điện tử truyền qua ngay dưới mặt mẫu phản ảnh lại tình trạng của mẫu, hình ảnh được phóng đại qua một loạt các thấu kính trung gian và cuối cùng thu được trên màn huỳnh quang. Do vậy, ảnh hiển vi điện tử truyền qua là hình ảnh bề mặt dưới của mẫu (ảnh đen trắng) thu được bởi chùm điện tử truyền qua mẫu. Với độ phân giải cao cỡ 0.2 nm, độ phóng đại từ x50 tới x1.500.000, TEM đóng vai trò quan trọng trong nghiên cứu siêu cấu trúc sinh vật, vi sinh vật và các vật liệu nano. Với những kính hiển vi điện tử độ phân giải cao (HR TEM) để quan sát cấu trúc mạng của vật liệu nano thì điện thế gia tốc thường yêu cầu khoảng 150 kV trở lên. Ở Việt Nam vẫn chưa có kính hiển vi điện tử nào hoạt động đạt độ phân giải cao như HR- TEM tính đến thời điểm hiện tại.

Cấu tạo chính của TEM gồm cột kính với các bộ phận từ trên xuống dưới: súng điện tử, tụ kính, buồng đặt mẫu, hệ thống thấu kính tạo ảnh (vật kính, kính trung gian, kính phóng); buồng quan sát và bộ phận ghi ảnh.

Cột kính có chân không cao, áp suất 10-5-10-6 Torr đối với TEM thông thường và cỡ 10-8-10-10 Torr đối với HR-TEM). Hệ thống bơm chân không, hệ thống điện, điện tử, hệ thống điều khiển bằng máy tính là những bộ phận kèm theo để đảm bảo cho quá trình làm việc liên tục của TEM. Đặc trưng cho TEM là các thông số: hệ số phóng đại M, độ phân giải và điện áp gia tốc U.

I.5.7.2. Thực nghiệm và thiết bị đo

Kính hiển vi điện tử truyền qua JEM1010, tại Viện Vệ sinh Dịch tễ Trung ương có các thông số M=x50 - x600.000, =3A0, U=40-100 kV.

Thực nghiệm: Trong luận án này các mẫu tiến hành đo phổ ảnh hiển vi điện tử truyền qua (TEM) trên máy JEM1010 tại viện vệ sinh dịch tễ Trung ương.

I.5.8. Phương pháp xác định diện tích bề mặt riêng (BET)I.5.8.1. Cơ sở lý thuyếtI.5.8.1. Cơ sở lý thuyết I.5.8.1. Cơ sở lý thuyết

V = (VmCX)/ [(1-X)(1-X+CX)] (I.11) Trong đó:

- X = P/P0: áp suất tương đối của chất bị hấp phụ (P: áp suất thực, P 0: áp suất bão hoà)

- V: thể tích chất bị hấp phụ cân bằng tại P/P0 (Vm: thể tích của đơn lớp) - C: hằng số đặc trưng cho năng lượng hấp phụ của lớp đầu tiên.

C = exp[(Ea - QL)/RT] (I.12)

Trong đó: Ea là nhiệt hấp phụ của lớp thứ nhất, QL là nhiệt hoá lỏng của chất bị hấp phụ.

Phương trình BET dựa trên ba giả thuyết sau:

1)Entanpy hấp thụ của các phân tử ở lớp thứ 2 trở đi thì bằng entanpy hoá lỏng. 2)Không có sự tương tác giữa các phân tử bị hấp phụ.

3)Số lớp hấp phụ tiến đến ∞ ở áp suất hơi bão hoà

Hình I.24. Các dạng đường đẳng nhiệt hấp phụ-khử hấp phụ theo phân loại IUPAC

Đường đẳng nhiệt kiểu I tương ứng với vật liệu mao quản vi mao quản hoặc không có mao quản . Kiểu II và III là của vật liệu mao quản có mao quản lớn d >50nm. Các vật liệu mao quản có kích thước MQTB có đường đẳng nhiệt kiểu IV và V. Phương trình BET ở trên được chuyển về dưới dạng:

P/V.(P0 - P) = 1/VmC + [(C - 1)/ VmC]. (P/P0) (I.13)

Tại một nhiệt độ nhất định, Vm và C là hằng số nên P/V. (P0 - P) phụ thuộc tuyến tính theo P/P0. Đường phụ thuộc thực nghiệm này cho phép xác định hệ số góc (C 1)/VmC và tung độ 1/VmC. Từ đó xác định Vm và suy ra SBET theo công thức:

I II

IV III

SBET = Vm. d.N.w/M (I.14) Trong đó: - d: khối lượng riêng.

-M: khối lượng phân tử của chất bị hấp phụ. -N: số Avogadro (N = 6,023 . 10 23mol -1).

-w: diện tích phần bề mặt bị chiếm bởi 1 phân tử bị hấp phụ.

Hình I.25. Sự phụ thuộc của P/V(P0 - P) theo P/P0

I.5.8.2. Thực nghiệm

Trong thực nghiệm, để xác định SBET của zeolit và các vật liệu mao quản khác, chất bị hấp phụ được dùng phổ biến nhất là N 2 (có ω = 0,162 nm2) trong khoảng P/P0 = 0,05 - 0,3, tại nhiệt độ T = 77K. Nếu Vm tính theo cm3/g thì SBET được tính theo m2/g dựa vào công thức:

SBET = 4,35 Vm (I.15)

Các thực nghiệm xác định SBET các vật liệu nghiên cứu của luận án được thực hiện tại Phòng thí nghiệm Hóa lý thuyết và H óa lý, khoa Hóa học đại học sư phạm Hà Nội I và khoa Công nghệ Hóa học Đại học Bách Khoa Hà Nội.

I.6. TỔNG QUAN VỀ XỬ LÝ 4-NITROPHENOL VÀ CÁC HỢP CHẤT HỮU CƠ KHÓ PHÂN HỦY.HỮU CƠ KHÓ PHÂN HỦY. HỮU CƠ KHÓ PHÂN HỦY.

I.6.1. p-nitrophenol và các dẫn xuất vòng thơm chứa nitro.

Hợp chất vòng thơm chứa nitro được sử dụng rộng rãi trong công nghiệp dược phẩm, thuốc nhuộm, phẩm nhuộm, công nghiệp nhựa, thuốc bảo vệ thực vật, thuốc nổ và dung môi công nghiệp [72]. Các hợp chất được sử dụng phổ biến là nitrobenzen, octo hoặc para nitrophenol (2-NP hoặc 4-NP), clorophenol,

….

Hình I.26. Hợp chất nitrophenol phổ biến

4-nitrophenol là chất rắn tinh thể màu vàng nhạt, nóng chảy ở 114 oC, tan khá nhiều trong nước (15g/lit ở 15 oC) tạo thành dung dịch màu vàng nhạt môi trường axit nhẹ (pKa = 7.16). Màu của dung dịch biến đổi theo pH của môi trường nên trong một số trường hợp 4-NP được sử dụng như một chỉ thị pH.

I.6.2. Độc tính của các hợp chất nitrophenol

4-NP nói riêng và các hợp chất nitrophenol nói chung đều là những chất có độc tính cao. 4-NP gây bỏng khi tiếp xúc với da, võng mạc và đường hô hấp tương tự hiện tượng bỏng phenol. Chúng tương tác với hemoglobin trong máu hình thành methaemoglobin là nguyên nhân gây nên bầm tím cục bộ, rối loạn tuần hoàn máu hoặc gây bất tỉnh. Nếu nhiễm độc 4-NP theo đường tiêu hóa, chúng là nguyên nhân gây đau bụng, nôn mửa.Tiếp xúc thời gian dài có thể gây dị ứng. Tuy nhiên không có đầy đủ bằng chứng về khả năng gây nhiễm ung thư. Chỉ số LD50 trên chuột là 282 mg/kg [73]. 4-NP tan tốt trong nước do vậy các chỉ tiêu với nước uống và nước đóng chai nhựa có sử dụng phụ gia nitrophenol cần được kiểm soát chặt chẽ. Ngoài ra, quanh khu vực sản xuất thuốc nổ, dược phẩm sử dụng các hợp chất này cần xử lý nước chứa nitrophenol trước khi xả thải. Ô nhiễm nguồn nước ngầm hoặc đất có chứa nitrophenol có thể gây nhiễm độc vi sinh và ảnh hưởng tới con người thông qua chuỗi thức ăn. Theo khuyến cáo của EPA nồng độ 4-NP cho phép trong nước tự nhiên không vượt quá 10 ppb [74].

I.6.3. Các phương pháp xử lý

Xử lý các hợp chất nitrophenol là một trường hợp riêng của quá trình xử lý các chất ô nhiễm hữu cơ trong nước. Các phương pháp thường được áp dụng là hấp phụ, phân hủy sinh học, oxi hóa tiên tiến (Advanced oxidation Process - AOP).

Hấp phụ là phương pháp đơn giản, dễ triển khai, tuy nhiên, phương pháp này sử dụng một lượng lớn chất hấp phụ nên hiệu quả kinh tế không cao. Để giải quyết bài toán này, thông thường cần một quá trình tái sinh chất hấp phụ tại chỗ hoặc tìm

Một phần của tài liệu Luận án tiến sĩ hóa học nghiên cứu tổng hợp, đặc trưng và một số ứng dụng (Trang 51)

Tải bản đầy đủ (PDF)

(134 trang)