Tài liệu ĐỀ THI TUYÊN SINH: " TRƯỜNG ĐẠI HỌC FPT" pptx
... (x-50) 2 = (y-50) 2 Đáp án: A BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC FPT ĐỀ THI TUYỂN SINH ĐỀ SỐ 001 Thời gian làm bài thi: 120 phút Số báo danh: Lưu ý quan trọng ... sẽ được thi lại. Nếu như mệnh đề trên là đúng thì điều nào sau đây cũng đúng? I. Nếu bạn không thể đưa ra bằng chứng là bạn bị bệnh, bạn không được thi lại. II. Nếu bạn muốn được thi lại, ... Thông thường thì không có nghĩa là chắc chắn. Câu 27 Có thể kết luận x bằng 3? (1) x 2 = 9 (2) x trừ đi 3 bằng âm 6 Đáp án: B Giải thích: x 2 = 9 không suy ra được x = 3 hay không....
Ngày tải lên: 16/01/2014, 22:20
Tài liệu Ôn thi tốt nghiệp và đại học: Trắc nghiệm phần biến dị doc
... gen B. Biến đổi kiểu hình không biến đổi kiểu gen C. Biến đổi kiểu gen không biến đổi kiểu hình D. cả a , b và c Trang 5/9 - Biến dị ÔN THI TỐT NGHIỆP Câu 30: Cá thể không thể tạo ra bằng con đường ... lượng hồng cầu của những người ở vùng cao nhiều hơn những người ở đồng bằng D. Bệnh máu khó đông ở người Câu 34: Thể đột biến thường không tìm thấy ở động vật bậc cao: A. Thể đa bội B. Thể dị bội ... hiện đồng loạt theo hướng xác định B. Cả a và b C. Không di truyền D. Xuất hiện riêng lẻ không theo hướng xác định Trang 3/9 - Biến dị ÔN THI TỐT NGHIỆP Câu 74: Thể mắt dẹt ở ruồi giấm là do...
Ngày tải lên: 20/01/2014, 14:20
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 8 - PGS TS Vinh Quang ppt
... 0 0 . . . . . . . . . . . . . . . 0 0 0 0 0 0 · · · 1 −1 0 0 0 0 · · · 0 1 4 ĐẠI SỐ TUYẾN TÍNH §8. Giải bài tập về ma trận nghịch đảo Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày ... số y 1 , y 2 , . . . , y n thỏa y 1 + · · · + y n = 0. Khi đó hệ vô nghiệm và do đó ma trận A không khả nghịch. 2. Nếu a = −n, khi đó ta có x 1 + x 2 + · · · + x n = 1 n + a (y 1 + · · · + y n ) ... tham số y 1 , y 2 , . . . , y n để phương trình trên vô nghiệm. Do đó hệ vô nghiệm và ma trận A không khả nghịch. (b) Nếu a = 0, ta có x 1 = 1 a(n + a) ((n + a − 1)y 1 − y 2 − · · · − y n ) (2)...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 9 - PGS TS Vinh Quang docx
... nghiệm (phụ thuộc n − r tham số) do đó hệ có nghiệm khác (0, 0, . . . , 0). 6 ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày 24 tháng 1 năm ... a n2 x 2 + · · · + a nn x n = 0 trong đó a ij = −a ji và n lẽ, có nghiệm không tầm thường. Giải: Gọi A là ma trận các hệ số, theo giả thi t (A) ij = −(A) ji do đó A = A t . Do tính chất định thức det ... thức trên. Vì f(X) có bậc n − 1 mà lại có n nghiệm phân biệt nên f(X) ≡ 0 (f(X) là đa thức không), do đó ta có x n = x n−1 = · · · = x 2 = 0, x 1 = 1. Vậy hệ phương trình đã cho có nghiệm duy...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 10 - PGS TS Vinh Quang doc
... với mọi a ∈ R, α ∈ V 2 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 10. Không gian vectơ PGS TS Mỵ Vinh Quang Ngày 18 tháng 3 năm 2005 1 Các khái niệm cơ bản 1.1 Định nghĩa không gian vectơ Ký hiệu ... hướng có phải là không gian vectơ hay không, ta phải kiểm tra xem chúng có thỏa mãn 8 điều kiện trên hay không. Bạn đọc có thể dễ dàng tự kiểm tra các ví dụ sau. 1.2 Các ví dụ về không gian vectơ 1. ... . . , α n , β ĐLTT khi và chỉ khi β không biểu thị tuyến tính được qua hệ α 1 , α 2 , . . . , α n . 3 Bài tập 1. Xét xem R 2 có là không gian vectơ hay không? với phép cộng và phép nhân vô hướng sau: (a 1 ,...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang doc
... V Không gian vectơ có cơ sở gồm hữu hạn vectơ gọi là không gian vectơ hữu hạn chiều. Không gian vectơ khác không, không có cơ sở gồm hữu hạn vvectơ gọi là không gian vectơ vô hạn chiều. Đại số ... −2y 1 + 3y 2 − y 3 4 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 11. Cơ Sở, Số Chiều Của Không Gian Vectơ PGS TS Mỵ Vinh Quang Ngày 27 tháng 3 năm 2005 1. Cơ sở Cho V là không gian vectơ, α 1 , ... thông thường là một không gian vectơ. Hệ vectơ 1, x, x 2 , . . . , x n là một cơ sở của R n [x] và ta có dimR n [x] = n + 1 3. Tính chất cơ bản của không gian vectơ hữu hạn chiều Cho V là không...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang docx
... A + rank B 7 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 12. Không gian vectơ con PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm 2006 1 Định nghĩa và các ví dụ 1.1 Định nghĩa Cho V là không gian vectơ. ... cấp n là không gian con của không gian M n (R) các ma trận vuông cấp n. 1.4 Số chiều của không gian con Liên quan đến số chiều của không gian vectơ con, ta có định lý sau: Nếu U là không gian vectơ ... không gian vectơ con của V gọi là không gian tổng của các không gian con A và B. Liên quan đến số chiều của không gian giao và không gian tổng ta có định lý sau. Định lý. Nếu A, B là các không...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 13 - PGS TS Vinh Quang pdf
... 15/02/2006 5 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 13. Bài tập về không gian véctơ PGS TS Mỵ Vinh Quang Ngày 10 tháng 3 năm 2006 1. Xét xem R 2 có là không gian véctơ hay không với phép ... không gian véctơ đều thỏa mãn, riêng điều kiện thứ 8 không thỏa mãn vì với α = (1, 1), khi đó: 1 ∗ α = 1 ∗ (1, 1) = (1, 0) = α. Vậy R 2 với các phép toán trên không là không gian véctơ vì không ... R + . Giải. Với mọi véctơ x ∈ R + ta có: x ⊕ 1 = x.1 = x do đó véctơ không trong KGVT R + là 1. Với mỗi véc tơ α ∈ R + , α khác véctơ không (tức là α = 1) ta chứng minh {α} là hệ sinh của R + . Thật...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 14 - PGS TS Vinh Quang doc
... B) ≤ rankA + rankB 1 1 Đánh máy: LÂM HỮU PHƯỚC, Ngày: 15/02/2006 4 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 14. Bài tập về không gian véctơ (tiếp theo) PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm ... α i 1 , . . . , α i k là hệ con ĐLTT tối đại của hệ α 1 , . . . , α m (do đó, rank{α 1 , . . . , α m } = k) và β j 1 , . . . , β j l là hệ con ĐLTT tối đại của hệ β 1 , . . . , β m (do đó rank{β 1 , ... nên α i + β n ∈ U, do đó hệ véctơ trên chính là cơ sở của V không chứa véctơ nào của U. b. Giả sử v 1 , . . . , v n là cơ sở của V không chứa véctơ nào của U và giả sử u 1 , . . . , u k là hệ véctơ...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 15 - PGS TS Vinh Quang pptx
... A f/ (α),(β) .[x]/ (α) 5 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 15. Ánh xạ tuyến tính PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm 2006 1 Định nghĩa và ví dụ 1.1 Định nghĩa Cho V và U là hai không gian véctơ, ... là ánh xạ tuyến tính không, ta cần phải kiểm tra f có các tính chất (i) và (ii) không. Bạn đọc có thể dễ dàng tự kiểm tra các ví dụ sau: 1.2 Các ví dụ Ví dụ 1. Ánh xạ không: 0 : V −→ U α −→ 0(α) ... . + a n f(α n ) = 0 mà a 1 , a 2 , . . . , a n không đồng thời bằng không nên f(α 1 ), f(α 2 ), . . . , f(α n ) PTTT. d. Ánh xạ tuyến tính không làm tăng hạng của một hệ véctơ, tức là với mọi...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 16 - PGS TS Vinh Quang docx
... ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 16. Vectơ riêng - Giá trị riêng của ma trận và của phép biến đổi tuyến ... V là không gian vectơ và f : V → V là phép biến đổi tuyến tính. Nếu U là không gian vectơ con bất biến của V sao cho f(U) ⊂ U thì U gọi là không gian con bất biến của V . Giả sử U là không gian ... + rank ψ − dim W 10 có vô số nghiệm. Không gian nghiệm của hệ (1) gọi là không gian con riêng của ma trận A ứng với giá trị riêng λ 0 . Các vectơ khác không là nghiệm của hệ (1) gọi là các vectơ riêng...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 17 - PGS TS Vinh Quang pdf
... 0 1 2 3 4 Vậy cơ sở của Im f là f(e 1 ), f(e 4 ), f(e 3 ) và dim f = 3. 5 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 17. Giải bài tập về ánh xạ tuyến tính PGS TS Mỵ Vinh Quang Ngày 10 tháng ... giả thi t ϕ 2 = ϕ nên ta có: β = ϕ(α) = ϕ 2 (α) = ϕ(ϕ(α)) = ϕ(β) = 0 (vì β ∈ Ker ϕ). Vậy β ∈ Im ϕ ∩ Ker ϕ thì β = 0. Do đó, Im ϕ ∩ Ker ϕ = {0}. 9. Cho f : V → V là ánh xạ tuyến tính, L là không ... α 3 = (0, 0, 0, 1). Chéo hóa. Tổng hợp 3 trường hợp trên ta thấy ma trận A chỉ có 3 vectơ riêng độc lập tuyến tính trong khi A là ma trận cấp 4 nên A không chéo hóa được. 7. Trong R 3 cho cơ sở: u 1 =...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 18 - PGS TS Vinh Quang ppt
... ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 18. Không gian vectơ Euclide PGS TS Mỵ Vinh Quang Ngày 10 tháng 3 năm 2006 1 Các khái niệm cơ bản 1.1 Tích vô hướng và không gian vectơ ... nghĩa Cho U là không gian vectơ con của không gian Euclide E và α là vectơ thuộc E. Khi đó góc giữa hai vectơ α và hình chiếu trực giao α cũng được gọi là góc giữa vectơ α và không gian con U. Độ ... i, ii, i’, ii’), ta dễ dàng có các công thức sau: • 0, α = α, 0 = 0 với mọi α ∈ V . 1 Chứng minh Nếu E 1 ∼ = E 2 thì theo định nghĩa E 1 , E 2 là các không gian vectơ đẳng cấu nên dim E 1 =...
Ngày tải lên: 15/12/2013, 10:15
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 19 - PGS TS Vinh Quang doc
... 27/02/2006 8 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 19. Bài tập về không gian véctơ Euclide PGS TS Mỵ Vinh Quang Ngày 10 tháng 3 năm 2006 1. Tìm một cơ sở trực giao, cơ sở trực chuẩn của không gian ... rằng mọi hệ véctơ trực giao không chứa véctơ không đều độc lập tuyến tính. Giải. Giả sử α 1 , . . . , α m là hệ trực giao, không chứa véctơ không (α i = 0) của không gian véctơ Euclide và giả ... giao, cơ sở trực chuẩn của không gian con L ⊥ của R 4 , biết L là các không gian con dưới đây: a. L = α 1 , α 2 với α 1 = (1, 0,−1, 2), α 2 = (−1, 1, 0,−1) b. L là không gian con các nghiệm của...
Ngày tải lên: 24/12/2013, 16:15
Bạn có muốn tìm thêm với từ khóa: