ôn thi cao học đại số tuyến tính

Ôn thi cao hoc đại số tuyến tính bài 1 - PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 1 - PGS TS Vinh Quang

... Monier. Đại số 1 - Nxb Giáo dục 2000 3. Ngô Thúc Lanh Đại số tuyến tính - Nxb Đại học và Trung học chuyên nghiệp 1970 4. Bùi Tường Trí. Đại số tuyến tính. 5. Mỵ Vinh Quang Bài tập đại số tuyến tính. Bài ... sau. 2 ĐẠI SỐ TUYẾN TÍNH PGS. TS Mỵ Vinh Quang Ngày 11 tháng 10 năm 2004 Mở Đầu Trong các kỳ thi tuyển sinh sau đại học, Đại số tuyến tính là môn cơ bản, là môn thi bắt buộc đối với mọi thí sinh thi ... nhất của môn học Đại số tuyến tính với mục đích giúp những người dự thi các kỳ tuyển sinh sau đại học ngành toán có được sự chuẩn bị chủ động, tích cực nhất. Vì là các bài ôn tập với số tiết hạn...

Ngày tải lên: 24/10/2013, 18:15

7 1,2K 33
Ôn thi cao hoc đại số tuyến tính bài 2 - PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 2 - PGS TS Vinh Quang

... 2α n         5 ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS. TS Mỵ Vinh Quang Ngày 28 tháng 10 năm 2004 Bài 2 : Các Phương Pháp Tính Định Thức Cấp n Định ... tích các ma trận vuông cấp n đơn giản hơn: A = B.C. Khi đó ta có D = det A = det(B.C) = det B. det C với các định thức det B, det C tính được dễ dàng nên D tính được. Ví dụ 4.1: Tính định thức cấp ... được định nghĩa khá phức tạp, do đó khi tính các định thức cấp cao (cấp lớn hơn 3) người ta hầu như không sử dụng định nghĩa định thức mà sử dụng các tính chất của định thức và thường dùng các...

Ngày tải lên: 24/10/2013, 18:15

7 868 29
Ôn thi cao hoc đại số tuyến tính bài 3 - PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 3 - PGS TS Vinh Quang

... b n          = 0 Giải : 6 ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS. TS Mỵ Vinh Quang Ngày 10 tháng 11 năm 2004 Bài 3 : Giải Bài Tập Định Thức 1. Tính       α β ... b 2 a                             = (a 2 −b 2 ) n Khi a = 0, do tính liên tục của định thức công thức trên vẫn đúng. Vậy ta có: D 2n = (a 2 − b 2 ) n 8 5. Tính định thức            1 + a 1 a 2 a 3 . ... Tính          a 1 + b 1 a 1 + b 2 . . . a 1 + b n a 2 + b 1 a 2 + b 2 . . . a 2 + b n . . . . . . . . . . . . a n + b 1 a n + b 3 . . . a n + b n          = 0 Giải : 6 ĐẠI SỐ...

Ngày tải lên: 29/10/2013, 00:15

10 852 25
Ôn thi cao hoc đại số tuyến tính bài 4 - PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 4 - PGS TS Vinh Quang

... trận bậc thang, và ta có rank A = 4 (bằng số dòng khác không của A), rank B = 5 (bằng số dòng khác không của B). 4 ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS ... ma trận) là các công cụ cơ bản để giải quyết các bài toán về hệ phương trình tuyến tính nói riêng và đại số tuyến tính nói chung. Bài viết này sẽ giới thi u định nghĩa, các tính chất cơ bản của ... thi t không chỉ trong việc tìm hạng của ma trận mà còn cần để giải nhiều bài toán khác của Đại số tuyến tính. Sau đây, chúng tôi xin đưa ra một thuật toán để đưa một ma trận về dạng bậc thang bằng các...

Ngày tải lên: 29/10/2013, 00:15

9 1,1K 28
Ôn thi cao hoc đại số tuyến tính bài 5- PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 5- PGS TS Vinh Quang

... . . . . 0 0 . . . a − b         = (a − b) n−1 = 0 Còn định thức cấp n bằng 0. 5 ĐẠI SỐ TUYẾN TÍNH GIẢI BÀI TẬP HẠNG CỦA MA TRẬN Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày 3 tháng ... 0       rankA = 2. Vậy rankA = n nếu x = 0 rankA = 2 nếu x = 0 21) Tìm hạng của ma trận vuông cấp n: A =       a b b . . . b b a b . . . b b b a . . . b . . . . . . . . . . . . . ....

Ngày tải lên: 07/11/2013, 23:15

5 892 25
Ôn thi cao hoc đại số tuyến tính bài 6 - PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 6 - PGS TS Vinh Quang

... . . , x n là ẩn, y 1 , y 2 , . . . , y n là các tham số. * Nếu với mọi tham số y 1 , y 2 , . . . , y n , hệ phương trình tuyến tính (2) luôn có nghiệm duy nhất:          x 1 = b 11 y 1 + ... · 1 + a        7 Ta có công thức sau đây để tìm ma trận nghịch đảo của A. Cho A là ma trận vuông cấp n. Nếu det A = 0 thì A không khả nghịch (tức là A không có ma trận nghịch đảo). Nếu ... b nn      * Nếu tồn tại y 1 , y 2 , . . . , y n để hệ phương trình tuyến tính (2) vô nghiệm hoặc vô số nghiệm thì ma trận A không khả nghịch. 4 x 4 = 1 (a − 1)(a + 3) (−y 1 − y 2 − y 3 + (a +...

Ngày tải lên: 07/11/2013, 23:15

7 921 24
Ôn thi cao hoc đại số tuyến tính bài 7 - PGS TS Vinh Quang

Ôn thi cao hoc đại số tuyến tính bài 7 - PGS TS Vinh Quang

... 0 0 0 m − 5     4 ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản chưa chỉnh sửa PGS TS. Mỵ Vinh Quang Ngày 19 tháng 12 năm 2004 HỆ PHƯƠNG TRÌNH TUYẾN TÍNH 1 Các khái niệm cơ ... tuyến tính (1) gọi là hệ Cramer nếu m = n (tức là số phương trình bằng số ẩn) và ma trận các hệ số A là không suy biến (det A = 0). b. Hệ phương trình tuyến tính thuần nhất Hệ phương trình tuyến ... 0. 7 (b) Nếu r < n thì hệ (1) có vô số nghiệm phụ thuộc vào n − r tham số. Ta có thuật toán sau để giải hệ phương trình tuyến tính: Lập ma trận các hệ số mở rộng A. Bằng các phép biến đổi sơ...

Ngày tải lên: 07/11/2013, 23:15

7 869 23
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 8 - PGS TS Vinh Quang ppt

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 8 - PGS TS Vinh Quang ppt

... 0 . . . . . . . . . . . . . . . 0 0 0 0 0 0 · · · 1 −1 0 0 0 0 · · · 0 1          4 ĐẠI SỐ TUYẾN TÍNH §8. Giải bài tập về ma trận nghịch đảo Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày ... · · · + y n 1. Nếu a = −n, ta có thể chọn tham số y 1 , y 2 , . . . , y n thỏa y 1 + · · · + y n = 0. Khi đó hệ vô nghiệm và do đó ma trận A không khả nghịch. 2. Nếu a = −n, khi đó ta có x 1 + ... · · · − y n ) (a) Nếu a = 0, ta có thể chọn tham số y 1 , y 2 , . . . , y n để phương trình trên vô nghiệm. Do đó hệ vô nghiệm và ma trận A không khả nghịch. (b) Nếu a = 0, ta có x 1 = 1 a(n...

Ngày tải lên: 15/12/2013, 10:15

5 1K 27
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 9 - PGS TS Vinh Quang docx

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 9 - PGS TS Vinh Quang docx

... Định lý Cronecker- Capelly hệ có vô số nghiệm (phụ thuộc n − r tham số) do đó hệ có nghiệm khác (0, 0, . . . , 0). 6 ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản đã chỉnh sửa PGS ... 0 trong đó a ij = −a ji và n lẽ, có nghiệm không tầm thường. Giải: Gọi A là ma trận các hệ số, theo giả thi t (A) ij = −(A) ji do đó A = A t . Do tính chất định thức det A = det A t nên ta có det ... Mỵ Vinh Quang Ngày 24 tháng 1 năm 2005 §9. Giải Bài Tập Về Hệ Phương Trình Tuyến Tính 27) Giải hệ phương trình tuyến tính          2x 1 + x 2 + x 3 + x 4 = 1 x 1 + 2x 2 − x 3 + 4x 4 =...

Ngày tải lên: 15/12/2013, 10:15

6 888 20
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 10 - PGS TS Vinh Quang doc

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 10 - PGS TS Vinh Quang doc

... = 3 Hệ con độc lập tuyến tính tối đại của hệ α 1 , α 2 , α 3 , α 4 là {α 1 , α 2 , α 4 }. 5 2 Độc lập tuyến tính, phụ thuộc tuyến tính 2.1 Các khái niệm cơ bản Cho V là không gian vectơ, α 1 , ... gian vectơ hoặc chỉ có một vectơ, hoặc có vô số vectơ. 3. Xét sự độc lập tuyến tính và phụ thuộc tuyến tính. Tìm hạng và hệ con độc lập tuyến tính tối đại của các hệ sau: (a) α 1 = (1, 0, −1, 0), ... V 2 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 10. Không gian vectơ PGS TS Mỵ Vinh Quang Ngày 18 tháng 3 năm 2005 1 Các khái niệm cơ bản 1.1 Định nghĩa không gian vectơ Ký hiệu R là tập các số...

Ngày tải lên: 15/12/2013, 10:15

6 877 24
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang doc

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang doc

... vectơ gọi là không gian vectơ hữu hạn chiều. Không gian vectơ khác không, không có cơ sở gồm hữu hạn vvectơ gọi là không gian vectơ vô hạn chiều. Đại số tuyến tính chủ yếu xét các không gian vectơ ... −2y 1 + 3y 2 − y 3 4 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 11. Cơ Sở, Số Chiều Của Không Gian Vectơ PGS TS Mỵ Vinh Quang Ngày 27 tháng 3 năm 2005 1. Cơ sở Cho V là không gian vectơ, α 1 , ... độc lập tuyến tính. Do đó, theo định lý cơ bản chúng có số vectơ bằng nhau. Số đó gọi là số chiều V , ký hiệu là dimV . Vậy theo định nghĩa: dimV = số vectơ của một cơ sở bất kỳ của V  Không gian...

Ngày tải lên: 15/12/2013, 10:15

6 932 23
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang docx

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 12 - PGS TS Vinh Quang docx

... cấp n là không gian con của không gian M n (R) các ma trận vuông cấp n. 1.4 Số chiều của không gian con Liên quan đến số chiều của không gian vectơ con, ta có định lý sau: Nếu U là không gian vectơ ... gồm đa thức không và các đa thức hệ số thực có bậc ≤ n là không gian con của R[x]. Tập các đa thức hệ số thực bậc n không là không gian con của R[x] vì cả 2 điều kiện 1 và 2 đều không được thỏa ... A + rank B 7 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 12. Không gian vectơ con PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm 2006 1 Định nghĩa và các ví dụ 1.1 Định nghĩa Cho V là không gian vectơ....

Ngày tải lên: 15/12/2013, 10:15

7 1,1K 19
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 13 - PGS TS Vinh Quang pdf

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 13 - PGS TS Vinh Quang pdf

... A 2 } độc lập tuyến tính. Vậy {A 1 , A 2 } là cơ sở của V và dim V = 2 1 1 Đánh máy: LÂM HỮU PHƯỚC, Ngày: 15/02/2006 5 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 13. Bài tập về không gian véctơ PGS ... luôn biểu thị tuyến tính được qua hệ gồm 1 véctơ {α}. Mặt khác vì α khác véctơ không nên hệ {α} là hệ véctơ độc lập tuyến tính. Vậy dim R + = 1 và cơ sở của R + là hệ gồm 1 véctơ {α} với α là số ... trình tuyến tính (∗) có nghiệm duy nhất (0, 0, . . . , 0) khi và chỉ khi ma trận các hệ số của hệ (∗) không suy biến khi và chỉ khi detA = 0. 5. Hệ véctơ α 1 , α 2 , . . . , α m biểu thị tuyến tính...

Ngày tải lên: 15/12/2013, 10:15

5 890 24
Tài liệu Ôn thi cao hoc đại số tuyến tính bài 14 - PGS TS Vinh Quang doc

Tài liệu Ôn thi cao hoc đại số tuyến tính bài 14 - PGS TS Vinh Quang doc

... = l). Khi đó vì α i biểu thị tuyến tính được qua hệ α i 1 , . . . , α j k và β j biểu thị tuyến tính được qua hệ β j 1 , . . . , β j l nên α i + β i biểu thị tuyến tính được qua hệ véctơ α i 1 , ... B) ≤ rankA + rankB 1 1 Đánh máy: LÂM HỮU PHƯỚC, Ngày: 15/02/2006 4 ĐẠI SỐ CƠ BẢN (ÔN THI THẠC SĨ TOÁN HỌC) Bài 14. Bài tập về không gian véctơ (tiếp theo) PGS TS Mỵ Vinh Quang Ngày 28 tháng 2 năm ... V không chứa véctơ nào của U. b. Giả sử v 1 , . . . , v n là cơ sở của V không chứa véctơ nào của U và giả sử u 1 , . . . , u k là hệ véctơ ĐLTT của U. Vì u 1 , . . . , u k biểu thị tuyến tính...

Ngày tải lên: 15/12/2013, 10:15

4 669 21

Bạn có muốn tìm thêm với từ khóa:

w