1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 39 pdf

19 201 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 259,08 KB

Nội dung

39.1: a) .smkg1037.2 )m1080.2( )sJ1063.6( λ λ 24 10 34        h p p h b) eV.3.19J1008.3 )kg1011.9(2 )smkg1037.2( 2 18 31 224 2        m p K 39.2: mE h p h 2 λ  m.1002.7 V)eJ1060.1()eV1020.4()kg1064.6(2 )sJ1063.6( 15 19627 34        39. 3: a) m.1055.1 )sm1070.4(kg)1011.9( sJ1063.6 λ 10 631 34        vm h e e b) m.1046.8m1055.1 kg1067.1 kg1011.9 λλ 1410 27 31                e p e p m m 39.4: a) keV.2.6 m)1020.0( )sm1000.3(s)eV10136.4( λ 9 815       hc E b) kg)1011.9(2 ))m1020.0()sJ10626.6(( 2 ) λ( 2 31 29342 2      m h m p K eV.37J100.6 18   Note that the kinetic energy found this way is much smaller than the rest energy, so the nonrelativistic approximation is appropriate. c)        J103.8 kg)1064.6(2 ))m1020.0(s)J10626.6(( 2 ) λ( 2 22 27 293422 m h m p K 5.2 meV. Again, the nonrelativistic approximation is appropriate. 39.5: a) In the Bohr model . 2 π nh rmv n  The de Broglie wavelength is m.1032.3)m1029.5(2λm1029.5:1for 2 λ 1011 1 11 01   πarn n r π mv h p h n This equals the orbit circumference. b) ,λ4 4 )16(2 λ16)4(:4 0 400 2 4  aπ aarn .m1033.1λ 9 4   The de Broglie wavelength is a quarter of the circumference of the orbit, .2 4 πr 39.6: a) For a nonrelativistic particle, so, 2 2 m p K  . 2 λ Km h p h  b) m.1034.4)Kg1011.9()J/eV1060.1()eV800(2)sJ1063.6( 11311934   39.7: m.1090.3 )sm340()kg005.0( sJ1063.6 λ 34 34      mv h p h We should not expect the bullet to exhibit wavelike properties. 39.8: Combining Equations 37.38 and 37.39 gives .1 2  γmcp a) m.1043.41)(λ 122   mch p h (The incorrect nonrelativistic calculation gives m.)1005.5 12  b) m.1007.71)( 132  mch 39.9: a) photon nm0.62 V)eJ10602.1()eV0.20( )sm10998.2()sJ10626.6( λso λ 19 834       E hchc E electron   V)eJ10602.1(eV)0.20()kg10109.9(22so)2( 19312 mEpmpE smkg10416.2 24   nm274.0λ  ph b) photon eV96.4J10946.7λ 19   hcE electron smkg10650.2λsoλ 27   hpph eV1041.2J10856.3)2( 5242   mpE c) You should use a probe of wavelength approximately 250 nm. An electron with 250λ  nm has much less energy than a photon with 250λ  nm, so is less likely to damage the molecule. 39.10: λ λ m h v mv h  2 2 2 2 λ2 λ2 1 2 1 m h m h mmvK         They will not have the same kinetic energy since they have different masses. 4 27 31 p e 2 e 2 2 p 2 e p 1046.5 kg1067.1 kg1011.9 λ2 λ2                          m m m h m h K K 39.11: a) nm10.0λ  keV12λ)c eV150)b sm103.7) λ(soλ 2 2 1 6    hcE mvE mhvhmvp d) The electron is a better probe because for the same λ it has less energy and is less damaging to the structure being probed. 39.12: (a) λλ mhvmvh  Energy conservation: 2 2 1 mvVe  V9.66 )m1015.0()kg1011.9()C1060.1(2 )sJ10626.6( λ22 )( 2 293119 234 2 2 2 λ 2        em h e m e mv V m h )b( J1033.1 m1015.0 )sm100.3()sJ10626.6( λ 15 9 834 photon        hc hfE V8310 C106.1 J1033.1 19 15 photon photon          e E V EKVe 39.13: For m =1, eV.432.0J1091.6 )6.28(sin)m1010.9()kg10675.1(2 )sJ1063.6( sin2 2 sin λ 20 221127 234 22 2         E θmd h E mE h θd 39.14: Intensity maxima occur when .λsin mθd  . ME mh θd ME h p h 2 sinso 2 λ  (Careful! Here, m is the order of the maxima, whereas M is the mass of the incoming particle.) a) )6.60sin()VeJ1060.1()eV188()kg1011.9(2 s)J1063.6()2( sin2 1931 34      θME mh d nm.206.0m1006.2 10   b) m = 1 also gives a maximum. one.otheronlytheisThis.8.25 m)1006.2()VeJ1060.1()eV188()kg1011.9(2 )sJ1063.6()1( arcsin 101931 34               θ If we let ,3  m then there are no more maxima. c) )6.60(sin)m1060.2(kg)1011.9(2 )sJ1063.6()1( sin2 221031 2342 22 22      θMd hm E eV.8.46J1049.7 18   Using this energy, if we let 2noisthereThus,.1sinthen,2    mθm maximum in this case. 39.15: Surface scattering implies .λsin mθd  .341.0 m1034.8 m1096.4 arcsinSo m.1096.4 λ J/eV)1060.1()eV840()kg1064.6(2 sJ1063.6 2 λBut ]λarcsin[:1If 11 13 13 1927 34                      θ mE h p h d θm 39.16: The condition for a maximum is .arcsinso,λ.λsin        dMv mh θ Mv h p h m θd (Careful! Here, m is the order of the maximum, whereas M is the incoming particle mass.) a)        dMv h θm arcsin1 1                            )sm1026.1()kg1011.9()m1060.1( )sJ1063.6()2( arcsin2 .07.2 )sm1026.1(kg)1011.9()m1060.1( sJ1063.6 arcsin 4316 34 2 4316 34 θm .14.4   b) For small angles (in radians!) so,Dθy  cm.81.1cm81.1cm61.3 cm61.3 180 radians )14.4()cm0.50( cm.81.1 180 radians )07.2()cm0.50( 12 2 1                    yy π y π y 39.17: a) m)1000.1()kg1200(2 )sJ1063.6( 222 6 34        πxπm h v π h xvm π h xp xx .sm1079.8 32  b) Knowing the position of a macroscopic object (like a car) to within 1.00 m μ is, for all practical purposes, indistinguishable from knowing “exactly” where the object is. Even with this tiny position uncertainty of 1.00 m μ , the velocity uncertainty is insanely small by our standards. 39.18: a) . 22 yuncertaintminimumfor 2 yπm h v π h yvm π h yp yyy    sm102.3 )m100.2(kg)1067.1(2 )sJ1063.6( 4 1227 34       π b) For minimum uncertainty, m.1063.4 )sm502.0(kg)1011.9(2 s)J1063.6( 22 4 31 34            πvπm h p π h z zz 39.19: Heisenberg’s Uncertainty Principles tells us that: . 2 π h px x  We can treat the standard deviation as a direct measure of uncertainty. .isclaimtheso 2 Therefore sJ1005.1 2 butsJ106.3)smkg100.3(m)102.1(Here 34352510 validnot π h px π h px x x      39.20: a) ,2)()( πhvmx x  and setting xx vv )010.0( and the product of the uncertainties equal to πh 2/ (for the minimum uncertainty) gives .sm57.9)(0.010)2(  xπmhv x  b) Repeating with the proton mass gives 31.6 s.mm 39.21: s.mkg1082.9 2 m10215.0 2 )sJ1063.6( 22 25 9 34                  π xπ h p π h xp m.18.5 )sm81.9(kg)00.1( J8.50 )d J.50.8J)1095.4( Nikg1075.9 kg00.1 )c eV.1009.3J1095.4 )kg1075.9(2 )m1082.9( 2 )b 2 total total 24 26 total 524 26 2252              mg K hKmgh NKK m p K e) One is claiming to know both an exact momentum for each atom (giving rise to an exact kinetic energy of the system) and an exact position of each atom (giving rise to an exact potential energy of the system), in violation of Heisenberg’s uncertainty principle. 39.22: .J1030.3eV1006.2 2 210292 ccmmcE π h tE   s.1020.3 )J1030.3(2 sJ1063.6 2 25 10 34 2          πmcπ h t 39.23:          69.8J1039.1 s)106.7(2 s)J1063.6( 22 14 21 34 πtπ h E π h tE MeV.0869.0eV10 4  .1081.2 MeV3097 MeV0869.0 5 2 2    c c E E 39.24: eV.1027.1J1003.2 s)102.5(2 s)J1063.6( 2 1332 3 34          πtπ h E 39.25: To find a particle’s lifetime we need to know the uncertainty in its energy. .s1008.1 )J1081.9(2 sJ1063.6 2 J1081.9 s)m1000.3()kg1067.1()5.4()145.0()( 24 11 34 11 28272            πEπ h t cmE    39.26: a) V.419 2 )λ( so, 2 )λ( 2 222  me h V m h m p KeV b) The voltage is reduced by the ratio of the particle masses, V.229.0 kg1067.1 kg1011.9 V)419( 27 31      39.27: a) We recall . 2 λ mE h p h  But the energy of an electron accelerated through a potential is just VeE   m.1034.4λ )V800(C)1060.1()kg1011.9(2 )sJ1063.6( 2 λ 11 1931 34          e e Vm h b) For a proton, all that changes is the mass, so   .m1001.1λ m1034.4. kg1067.1 kg1011.9 λλ 12 11 27 31          e e p e p m m 39.28: ,sin ωtψ   so ωtψωtψψ 2 2 2** 2 sinsin  . 2  is not time-independent, so  is not the wavefunction for a stationary state. 39.29: a)   kxAxψ sin . The probability density is ,sin 22 2 kxAψ  and this is greatest when 5,3,1, 2 1sin 2  n n π kxkx 5,3,1, 4 λ )λ22(2  n n π nπ k n π x b) The probability is zero when 0 2 ψ , which requires 2,1,0, 2 λ 0sin 2  n n k nπ xnπkxkx 39.30: a) The uncertainty in the particle position is proportional to the width of   xψ , and is inversely proportional to  . This can be seen by either plotting the function for different values of  , finding the expectation value   dxxψx 222 for the normalized wave function or by finding the full width at half-maximum. The particle’s uncertainty in position decreases with increasing  . The dependence of the expectation value  2 x on  may be found by considering          dxe dxex x x x 2 2 2 22 2   =              dxe x 2 2 ln 2 1   , 4 1 2 1 ln 2 1 2                  due u where the substitution xu   has been made. (b) Since the uncertainty in position decreases, the uncertainty in momentum must increase. 39.31:                       iyx iyx yxf iyx iyx yxf ),(and),( * .1* 2                        iyx iyx iyx iyx fff 39.32: The same. ),,(),,(),,( * 2 zyxψzyxψzyxψ  )),,()(),,((),,( * 2  iii ezyxψezyxψezyxψ   ).,,(),,( * zyxψzyxψ The complex conjugate means convert all i ’s to i  ’s and vice-versa. .1   ii ee 39.33: Following the hint: If we Taylor expand sin( ax ) about a point 0 x , we get    ))(()( 000 xxxfxf .))(cos()sin( 000  xxaxaax 0 If xx  is small we can even ignore the first order term and sin( ax )  sin ( 0 ax ). For us Lxx 01.0 0  which is small compared to              L πx L zyx ψL 0 23 sin 2 ),,(so .sinsin 00              L πz L πy a) 4 000 L zyx  .101.00)0.01( 2 22 4 sin 2 63 6 3 6 3 2                                L L V π L dVψP b) 2 1 000  zyx                        .108.00)(0.01 2 2 sin 2 63 3 6 3 2 L L V π L dV ψP 39.34: Eq. (39.18): EψUψ dx ψd m   2 22 2  Let 21 BψAψψ  )()()( 2 212121 2 22 BψAψEBψAψUBψAψ dx d m     .0 22 22 2 2 22 11 2 1 22                    EψUψ dx ψd m BE ψUψ dx ψd m A  But each of 1 ψ and 2 ψ satisfy Schröedinger’s equation separately so the equation still holds true, for any A or B. 39.35: . 2 2211 2 22 ψCEψBEUψ dx ψd m   If ψ were a solution with energy E, then 212211 CEψBEψψCEψBE  or .)()( 2211 ψEECψEEB  This would mean that 1 ψ is a constant multiple of 212 andand, ψψψ would be wave functions with the same energy. However, 21 EE  , so this is not possible, and ψ cannot be a solution to Eq. (39.18). 39.36: a) eV)J10eV)(1.60kg)(40102(9.11 s)J10(6.63 2 λ 1931 34      mK h m.101.94 10  b) s.106.67 eV)J1062(40eV)(1. kg)101(2.5m)(9.1 2 7 19 2131        mE R v R c) The width ,and' λ 2is mtptvw a Rww yy  where t is the time found in part (b) and a is the slit width. Combining the expression for s.mkg102.65 λ2 , 28   at Rm pw y  d) ,m0.40 2 μ pπ h y y    which is the same order of magnitude. 39.37: a) 12eVλ  hcE b) Find E for an electron with m.100.10λ 6  smkg106.626λsoλ 27   hpph eV101.5)2( 42   mpE V101.5so 4  VVqE sm107.3kg)10(9.109s)mkg106.626( 33127   mpv c) Same λ so same p. .V108.2andeV108.2sokg101.673nowbut)2( 88272   VEmmpE sm4.0kg)10(1.673s)mkg10(6.626 2727   mpv 39.38: (a) Single slit diffraction: λsin mθa  m105.13m)sin2010(150sinλ 89   θa λλ mhvmvh  sm101.42 m)10kg)(5.1310(9.11 sJ106.626 4 831 34       v (b) 2λsin 2 θa 0.684 m10150 m105.13 2 λ 2sin 9 8 2               a θ  43.2 2 θ 39.39: a) The first dark band is located by aθ λsin  355nm sin25.0 150nm sin λ    θ a b) Find λ for the electrons J101.324 λ 18 photon   hc E smkg101.5532so)( 24   mEpm2pE 2 m104.266λ 10  ph No electrons at locations of minima in the diffraction pattern. The angular position of these minima are given by: ,32,1,),0.00120()m10355()m104.266(λsin 910   mmmamθ ;0.207,3;0.138,2;0.0689,1                mmm 39.40: According to Eq. 35.4 nm.600 2 00)m)sin(0.0310(40.0sin λ 6     m θd The velocity of an electron with this wavelength is given by Eq. 39.1 .sm101.21 )m10600)(kg109.11( )sJ106.63( λ 3 931 34       m h m p v Since this velocity is much smaller than c we can calculate the energy of the electron classically .eV4.19J106.70)sm10kg)(1.2110(9.11 2 1 2 1 2523312 μmvK   39.41: The de Broglie wavelength of the blood cell is .m101.66 )sm10kg)(4.0010(1.00 s)J10(6.63 λ 17 314 34        mv h We need not be concerned about wave behavior. 39.42: a) mv c v h p h 21 2 2 1 λ           2 22 2 2 2 2222 1λ c vh h c v hvm           2 2 2 2222 λ h c v hvm                      1 λ λ 2 222 2 2 2 22 2 2 h cm c c h m h v . λ 1 21 2                 h mc c v b) .)1( λ 2 1 1 )( λ 1 2 21 2 c h mc c mch c v                                   . 2 λ 2 222 h cm  c) .1000.1λ 15 mc h m   So 8 234 21528231 1050.8 s)J102(6.63 m)10(1.00s)m10(3.00kg)10(9.11        .)108.501()Δ1( 8 ccv   39.43: a) Recall . 22 λ Vmq h mE h p h   So for an electron: .m101.10λ V)C)(12510kg)(1.60102(9.11 sJ106.63 λ 10 1931 34        b) For an alpha particle: .m109.10 V)C)(12510kg)2(1.60102(6.64 sJ106.63 λ 13 1927 34        [...]... 2.82  103 MeV h (6.63  10 34 J  s)  λ 15mc 15 (1.67  10 27 kg)(3.00  108 m s)  3.42  10 16 m (6.626  10 34 J  s) h  39. 46: p ~  2.0  10 24 kg  m s , which is comparable to 10 2πa0 2π (0.5292  10 m) mv1  2.0  1024 kg  m s 39. 47: x  0.40λ  0.40 39. 48: a) h h h p But xp x   p x (min)    0.40 p 2π p 2πx 2π (0.4) (6.626  10 34 J  s)  2.1  10 20 kg  m s 2π (5.0... hc 39. 54: a) E  2.58 eV  4.13  10 19 J, with a wavelength of λ   4.82  10 7 m  E 482 nm 39. 53: a) λ  b) E  (6.63  10 34 J  s) h   6.43  10 28 J  4.02  10 9 eV 7 2πt 2π (1.64  10 s) c) λE  hc, so (λ ) E  λE  0, and E E  λ λ , so λ  λ E E   6.43  10 28 J  16 7 (4.82  10 m)   4.13  10 19 J   7.50  10 m  7.50  10 nm    22 6.63  10 J  s h  39. 55:... ), or x 2  The minimum energy is mk 39. 58: a) Using the given approximation, E  then h k m b) They are the same dU For x  0, x  x  F   A For x  0, x  dx Ax  x  F  A So F ( x)   for x  0 x p2 h2 b) From Problem 39. 58, E  K  U   A x , and px  h  E   A x 2m 2mx 2 h2 dE dE For x  0; E   Ax The minimum energy occurs when 0 0 2 2mx dx dx 39. 59: a) U  A x but F   13 13  h2... magnitude larger than the potential energy of an electron in a hydrogen atom 6.63  10 34 J  s h  39. 49: a) p (min)   2.1  10 20 kg  m s 2πx 2π (5.0  10 15 m) b) E  ( pc) 2  (mc 2 ) 2  [(2.1  10 20 kg  m s)(3.0  10 8 m s)]2  [(9.11  10 31 kg)(3.0  10 8 m s) 2 ]2  6.3  10 12 J  39. 5MeV K  E  mc 2  38.8 MeV c) The coulomb potential energy is U  q1q2 (1.60  10 19 C) 2 U... uncertainty is much larger than the real uncertainty as compared to the 4.50 eV λ 39. 56: sin θ   sin θ , and λ  (h p)  (h 2mE ) , and so λ h   θ   arcsin sin θ   λ 2mE   7   (6.63  10 34 J  s) sin 35.8    arcsin  (3.00  10 11 m) 2(9.11  10 31 kg)(4.50  10 3 )(1.60  10 19 J eV)     20.9 39. 57: a) The maxima occur when 2d sin θ  mλ as described in Section 38.7 b)... in the nucleus 39. 50: a) Take the direction of the electron beam to be the x-direction and the direction of motion perpendicular to the beam to be the y-direction Then, the uncertainty r in the position of the point where the electrons strike the screen is p y x r  v y t  m vx  h 2πmy x 2K m  9.56  10 10 m, which is (b) far too small to affect the clarity of the picture 39. 51: E  (6.63... 2 A2     2 m     39. 60: For this wave function,    ψ1e iω1t ψ 2 e iω2t , so  2       (ψ1 e iω1t  ψ 2 e iω2t )(ψ1e iω1t  ψ 2 e iω2t )  *   ψ1ψ1  ψ 2ψ 2  ψ1 ψ 2 e i ( ω1 ω2 )t  ψ 2ψ1e i ( ω2 ω1 ) t 2 The frequencies ω1 and ω2 are given as not being the same, so  is not time-independent, and  is not the wave function for a stationary state 39. 61: The time-dependent... dx    Since ψ is a solution of the time-independent solution with energy E , the term in parenthesis is Eψ , and so ω  E , and ω  ( E ) 39. 62: a) 2π E E  h  2π 2π p p k  λ h  2 p (k)2  ω  E  KE  2m 2m 2 k ω 2m ω  2π f  b) From Problem 39. 61 the time-dependent Schrödinger’s equation is  2  2ψ ( x, t )  2m x 2 ψ ( x, t ) U ( x)  0 for a free particle, so t  2ψ ( x,...  t      m   0.25 kg  39. 64: a) ψ 2  A2 x 2 e 2 ( αx ue  2u f ( y, z ), and 2  βy 2  γz 2 ) 2 To save some algebra, let u  x 2 , so that ψ  1  2 2 , ψ  (1  2u ) ψ ; the maximum occurs at u 0  2 u 1 2 b) ψ vanishes at x  0, so the probability of finding the particle in the x  0 plane is zero The wave function vanishes for x   x0   2 2 2 39. 65: a) ψ ( x, y, z )  Ae ... The uncertainty principle states that w p wx  k 0 is, w p w x  h, which is greater than h For us, no matter what 2π h 2π 39. 68: a) For a standing wave, nλ  2 L, and p 2 (h λ ) 2 n 2 h 2   2m 2m 8mL2 b) With L  a0  0.5292  10 10 m, E1  2.15  10 17 J  134 eV En  39. 69: Time of flight of the marble, from free-fall kinematic equation is just t  2(25.0 m)  2.26 s 9.81 m s 2 ht   px  . b) eV.3.19J1008.3 )kg1011.9(2 )smkg1037.2( 2 18 31 224 2        m p K 39. 2: mE h p h 2 λ  m.1002.7 V)eJ1060.1()eV1020.4()kg1064.6(2 )sJ1063.6( 15 19627 34        39. 3: a) m.1055.1 )sm1070.4(kg)1011.9( sJ1063.6 λ 10 631 34        vm h e e . .2 4 πr 39. 6: a) For a nonrelativistic particle, so, 2 2 m p K  . 2 λ Km h p h  b) m.1034.4)Kg1011.9()J/eV1060.1()eV800(2)sJ1063.6( 11311934   39. 7: m.1090.3 )sm340()kg005.0( sJ1063.6 λ 34 34      mv h p h

Ngày đăng: 24/01/2014, 07:20

TỪ KHÓA LIÊN QUAN

w