1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 15 pdf

39 432 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 516,22 KB

Nội dung

15.1: a) The period is twice the time to go from one extreme to the other, and v  f    T  (6.00 m) (5.0 s)  1.20 m s, or 1.2 m s to two figures b) The amplitude is half the total vertical distance, 0.310 m c) The amplitude does not affect the wave speed; the new amplitude is 0.150 m d) For the waves to exist, the water level cannot be level (horizontal), and the boat would tend to move along a wave toward the lower level, alternately in the direction of and opposed to the direction of the wave motion fv 15.2: f  15.3: v 1500 m s   1.5  106 Hz  0.001 m a)   v f  (344 m s) (784 Hz)  0.439 m b) f  v   (344 m s) (6.55  105 m)  5.25  106 Hz 15.4: a) Denoting the speed of light by c,   cf , and 0010 m s 54010 Hz  556 m 3.0010 m s b) 104  2.87 m .510 Hz 15.5: a)  max  (344 m s) (20.0 Hz)  17.2 m,   (344 m s) (20,000 Hz)  1.72 cm b)  max  (1480 m s) (20.0 Hz)  74.0 m,   (1480 m s) (20,000 Hz)  74.0 mm 15.6: Comparison with Eq (15.4) gives a) 6.50 mm, b) 28.0 cm, 1 c) f  T  0.0360  27.8 Hz and from Eq (15.1), d) v  (0.280 m)(27.8 Hz)  7.78 m s , s e)  x direction 15.7: a) f  v   (8.00 m s) (0.320 m)  25.0 Hz, T  f  (25.0 Hz)  4.00  102 s, k  2π   (2π ) (0.320 m)  19.6 rad m   x  b) y ( x, t )  (0.0700 m) cos 2π  t (25.0 Hz)  0.320 m   c) (0.0700 m) cos 2π ((0.150 s)(25.0 Hz)  (0.360 m) (0.320 m))  4.95 cm d) The argument in the square brackets in the expression used in part (c) is 2π (4.875), and the displacement will next be zero when the argument is 10π; the time is then T (5  x )  (1 25.0 Hz)(5  (0.360 m) (0.320 m))  0.1550 s and the elapsed time is 0.0050 s, e) T  0.02 s 15.8: b) a) 15.9: and so b) and so a) 2 y x  y   Ak sin(kx  ωt ) x 2 y   Ak cos(kx  ωt ) x y   Aω sin (kx  ωt ) t 2 y   Aω2 cos(kx  ωt ), t k2  y ω t , and y ( x, t ) is a solution of Eq (15.12) with v  ω k y   Ak cos(kx  ωt ) x 2 y   Ak sin(kx  ωt ) x y   Aω cos(kx  ωt ) t 2 y   Aω2 sin (kx  ωt ), t 2 y x  k2  y ω t , and y ( x, t ) is a solution of Eq (15.12) with v  ω k c) Both waves are moving in the  x -direction, as explained in the discussion preceding Eq (15.8) d) Taking derivatives yields v y ( x, t )  ωA cos (kx  ωt ) and a y ( x, t )  ω A sin (kx  ωt ) 15.10: a) The relevant expressions are y ( x, t )  A cos(kx  ωt ) y vy   ωA sin (kx  ωt ) t  y v a y   y  ω2 A cos (ωt  kx) t t b) (Take A, k and ω to be positive At x t  0, the wave is represented by (19.7(a)); point (i) in the problem corresponds to the origin, and points (ii)-(vii) correspond to the points in the figure labeled 1-7.) (i) v y  ωA cos(0)  ωA, and the particle is moving upward (in the positive y-direction) a y  ω2 A sin(0)  0, and the particle is instantaneously not accelerating (ii) v y  ωA cos( π 4)  ωA a y  ω2 A sin( π 4)  ω2 A , and the particle is moving up , and the particle is speeding up (iii) v y  ωA cos( π 2)  0, and the particle is instantaneously at rest a y  ω2 A sin(  π 2)  ω2 A, and the particle is speeding up (iv) v y  ωA cos( 3π 4)   ωA a y  ω2 A sin( 3π 4)  ω2 A , and the particle is moving down , and the particle is slowing down ( v y is becoming less negative) (v) v y  ωA cos(π )  ωA and the particle is moving down a y  ω2 A sin(π )  0, and the particle is instantaneously not accelerating (vi) v y  ωA cos( 5π 4)   ωA and the particle is moving down a y  ω2 A sin( 5π 4)  ω2 A and the particle is speeding up ( v y and a y have the same sign) (vii) v y  ωA cos( 3π 2)  0, and the particle is instantaneously at rest a y  ω2 A sin(  3π 2)  ω2 A and the particle is speeding up (viii) v y  ωA cos( 7π 4)  ωA a y  ω2 A sin( 7π 4)   ω2 A opposite signs) , and the particle is moving upward and the particle is slowing down ( v y and a y have 15.11: Reading from the graph, a) A  4.0 mm, b) T  0.040 s c) A displacement of 0.090 m corresponds to a time interval of 0.025 s; that is, the part of the wave represented by the point where the red curve crosses the origin corresponds to the point where the blue curve crosses the t-axis ( y  0) at t  0.025 s, and in this time the wave has traveled 0.090 m, and so the wave speed is 3.6 m s and the wavelength is vT  (3.6 m s)(0.040 s)  0.14 m d) 0.090 m 0.015 s  6.0 m s and the wavelength is 0.24 m d) No; there could be many wavelengths between the places where y (t ) is measured 15.12: a)   2π  x t  A cos 2π      A cos  x  t    T   T    A cos where   f  v has been used T 2 x  vt ,  y 2πv 2π  A sin  x  vt  t λ λ c) The speed is the greatest when the cosine is 1, and that speed is 2πvA λ This will be equal to v if A   2π , less than v if A   2π and greater than v if A   2π b) vy  15.13: a) t  : x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 y(cm) 0.000 0.212 0.300 0.212 0.000 0.212 0.300 0.212 0.000 b) i) t = 0.400 s: _ x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 _ y(cm) 0.285 0.136 0.093 0.267 0.285 0.136 0.093 0.267 0.285 _ ii  t  0.800 s : x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 y(cm) 0.176 0.296 0.243 0.047 0.176 0.296 0.243 0.047 0.176 15.14: Solving Eq (15.13) for the force F ,  0.120 kg  2 F  μv  μ f      ((40.0 Hz) (0.750 m))  43.2  2.50 m   15.15: a) Neglecting the mass of the string, the tension in the string is the weight of the pulley, and the speed of a transverse wave on the string is v (1.50 kg)(9.80 m s ) F   16.3 m s (0.0550 kg m) μ b)   v f  (16.3 m s) (120 Hz)  0.136 m c) The speed is proportional to the square root of the tension, and hence to the square root of the suspended mass; the answers change by a factor of , to 23.1 m s and 0.192 m 15.16: a) v  F μ  (140.0  ) (10.0 m) (0.800 kg )  41.8 m s b)   v f  (41.8 m s) (1.20 Hz)  34.9 m c) The speed is larger by a factor of , and so for the same wavelength, the frequency must be multiplied by , or 1.70 Hz 15.17: Denoting the suspended mass by M and the string mass by m, the time for the pulse to reach the other end is t L  v L  Mg (m L) (0.800 kg )(14.0 m) mL   0.390 s (7.50 kg )(9.80 m s ) Mg 15.18: a) The tension at the bottom of the rope is due to the weight of the load, and the speed is the same 88.5 m s as found in Example 15.4 b) The tension at the middle of the rope is (21.0 kg ) (9.80 m s )  205.8 N (keeping an extra figure) and the speed of the rope is 90.7 m s c) The tension at the top of the rope is (22.0 kg)(9.80 m s )  215.6 m s and the speed is 92.9 m s (See Challenge Problem (15.80) for the effects of varying tension on the time it takes to send signals.) 15.19: a) v  F μ  (5.00 N) (0.0500 kg m)  10.0 m s b)   v f  (10.0 m s) (40.0 Hz)  0.250 m c) y ( x, t )  A cos(kx  ωt ) (Note : y (0.0)  A, as specified.) k  2π   8.00π rad m; ω  2πf  80.0π rad s y ( x, t )  (3.00 cm)cos[π (8.00 rad m) x  (80.0π rad s)t ] d) v y   Aω sin( kx  ωt ) and a y   Aω2cos(kx  ωt ) a y , max  Aω2  A(2πf )  1890 m s e) a y , max is much larger than g, so ok to ignore gravity 15.20: a) Using Eq.(15.25), Pave  μF ω2 A2  3.00  103 kg   (25.0 N) (2(120.0 Hz))2 (1.6  103 m) 0.80 m   = 0.223 W,  or 0.22 W to two figures W 15.21: b) Halving the amplitude quarters the average power, to 0.056 Fig 15.13 plots P ( x, t )  μF ω2 A2 sin (kx  ωt ) at x  For x  0, P ( x, t )  μF ω2 A2 sin (ωt )  Pmax sin (ωt ) When x   4, kx  (2π ) ( 4)  π sin (π  ωt )  cos ωt , so P ( 4, t )  Pmax cos ωt The graph is shifted by T but is otherwise the same The instantaneous power is still never negative and Pav  12 Pmax , the same as at x  15.22: r2  r1 Ι1 Ι2  (7.5 m) 0.11 W m 1.0 W m  2.5 m, so it is possible to move r1  r2  7.5 m  2.5 m  5.0 m closer to the source 15.23: a) Ι1r 12  Ι r 2 Ι  Ι1 (r1 r2 )  (0.026 W m )(4.3 m 3.1 m)  0.050 W m b) P  4πr Ι  4π (4.3m ) (0.026 W m )  6.04 W Energy = Pt  (6.04 W )(3600 s)  2.2  10 J 15.24: v ω k  (a) A  2.30 mm (b) f  742 rad s 6.98 rad m ω 2π  742 rad s 2 118 Hz (c)   2π k  2 6.98 rad m  0.90 m (d)  106 m s (e) The wave is traveling in the –x direction because the phase of y (x,t) has the form kx  ωt (f) The linear mass density is μ  (3.38  10 3 kg ) (1.35 m )  2.504  10 3 kg m , so the tension is F  μv  (2.504  103 kg m)(106.3 m s)  28.3 N (keeping an extra figure in v for accuracy) (g) Pav  μF ω2 A2  (2.50  103 kg m)(28.3 N) (742 rad s) (2.30  103 m)  0.39 W 15.25: I  0.250 W m at r  15.0 m P  4πr I  4π (15.0 m) (0.250 W m )  707 W 15.26: b) a) The wave form for the given times, respectively, is shown ... 103 m)  0.39 W 15. 25: I  0.250 W m at r  15. 0 m P  4πr I  4π (15. 0 m) (0.250 W m )  707 W 15. 26: b) a) The wave form for the given times, respectively, is shown 15. 27: b) 15. 28: a) The wave...   A cos 3π  ωt  e) See Exercise 15. 12; ωA  0. 315 m s f) From the result of part d , y  mm v y   0. 315 m s 15. 48: a) From comparison with Eq ? ?15. 4 , A  0.75 cm,   f  125 Hz, T... (15. 12) 15. 36: a) From Eq (15. 35), f1  b) 10 , 000 Hz 408 Hz 2L FL  2(0.400 m) m (800 N)(0.400 m) =408 Hz (3.00  10  kg )  24.5, so the 24 th harmonic may be heard, but not the 25 th 15. 37:

Ngày đăng: 10/12/2013, 12:15

TỪ KHÓA LIÊN QUAN

w