1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 17 pdf

34 393 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 307,24 KB

Nội dung

17.1: From Eq.         F.1.134327.5659b) F.0.81328.6259a) ,1.17     F.0.88321.3159c)  17.2: From Eq.         C.7.413210795b) C.0.5320.4195a) ,2.17     C.8.2732189/5c)  17.3:  F0.720.40so ,FC1 5 9 F140.2F0.70 12  TT 17.4: a) C.6.55)440.56(9)5(b) C.2.27))0.4((45.0)95(  17.5:    F,4.104322.4059(17.1),Eq.Froma)  which is cause for worry.    F54or F,6.53321259b)  to two figures. 17.6:     F2.218.1159 17.7:  FC1K1 5 9 , so a temperature increase of 10 K corresponds to an increase of 18 F . Beaker B has the higher temperature. 17.8: For    C0.10(a),for Then .C0.10),b( 5 9 C 5 9 FKC TTTT .F0.18  17.9: Combining Eq. (17.2) and Eq. (17.3),   ,15.27332 9 5  FK TT and substitution of the given Fahrenheit temperatures gives a) 216.5 K, b) 325.9 K, c) 205.4 K. 17.10: (In these calculations, extra figures were kept in the intermediate calculations to arrive at the numerical results.)  )85.126)(5/9(C,12715.273400a) FC TT F.1079.232)1055.1)(5/9(C,1055.115.2731055.1c) F.28932)15.178)(5/9(C,17815.27395b)F.26032 77 F 77 C FC   TT TT 17.11: From Eq. K.23.2715.273)C92.245(),3.17( K T 17.12: From Eq. C.1769273.15K2042.14K)3.16(7.476)(27),4.17(  17.13: From Eq.   mm.444)mm0.325(),4.17( K273.16 K15.373  17.14: On the Kelvin scale, the triple point is 273.16 K, so R.491.69K5(9/5)273.1R  One could also look at Figure 17.7 and note that the Fahrenheit scale extends from F32 toF460  and conclude that the triple point is about 492 R. 17.15: From the point-slope formula for a straight line (or linear regression, which, while perhaps not appropriate, may be convenient for some calculators), C,33.282 Pa1080.4Pa106.50 Pa1080.4 )C0.100()C01.0( 44 4     which is C282 to three figures. b) Equation (17.4) was not obeyed precisely. If it were, the pressure at the triple point would be   Pa.1076.4)16.273( 4 15.373 Pa1050.6 4   P 17.16:             C,168m1.62C104.2m1025 1 52 0    αLLT so the temperature is C183 . 17.17: .TL m39.0C)5.0)(Cm)(18.01410)()C(102.1( 15 0   17.18: )1( Tαddd  C)))78.0(C0.23)()C(10(2.4cm)(14500.0( 15   mm.4.511cm4511.0  17.19: a) cm,101.4C)(28.0cm)90.1)()C(106.2( 315 0  TαD so the diameter is 1.9014 cm. b) cm,106.3 3 0  TαD so the diameter is 1.8964 cm. 17.20: .102.9C)19.5C)(5.00)C(100.2( 415  Tα 17.21:           C0.25m10125.40m103.2)()( 24 0 TLLα   .C103.2 1 5    17.22: From Eq. (17.8), C.4.49soC,4.29 15 3 0 K101.5 1050.1       TT β VV 17.23        L,11C0.9L1700C1075 1 5 0    TVβ so there is 11 L of air. 17.24: The temperature change is .C0.14C0.32C0.18 T The volume of ethanol contracts more than the volume of the steel tank does, so the additional amount of ethanol that can be put into the tank is   TVββVV  0ethanolsteelethanolsteel     15 1 5 )C(1075C106.3         33 m0280.0C0.14m80.2  17.25: The amount of mercury that overflows is the difference between the volume change of the mercury and that of the glass;         .C107.1 0.55cm1000 cm95.8 K100.18 1 5 3 3 15 glass      C β 17.26: a) .222, 0 22 ALLLALA L L L L   But ,Tα L L   and so   .22 00 TAαTAαA  b)         .m104.1C5.12)m275.())C(104.2(22 24 2 15   πTAαA  17.27: a)   .cm431.1cm350.1 44 2 2 2 0  ππD A b)             .cm437.1C150C1020.121cm431.121 252 0   TαAA 17.28: (a ) No, the brass expands more than the steel. (b) call  D the inside diameter of the steel cylinder at BRST :C150At C20 DD    cm026.25 )C130)()C(102.1(1 )C130)()C(10(2.01cm)25( 1 )cm(125 )cm25(cm25T Dcm000.25 15 15 ST BR BRST BRST             Tα Tα D T αDαD DD    17.29: The aluminum ruler expands to a new length of cm048.20)]C100)()C(10(2.4cm)[10.20()1( 15 0   TαLL The brass ruler expands to a new length of cm040.20)]C100)()C(10(2.0cm)[10.20()1( 15 0   TαLL The section of the aluminum ruler will be longer by 0.008 cm 17.30: From Eq. (17.12), N.100.4 )m10C)(2.01110)()C(10Pa)(2.0109.0( 4 241511     TAYαF 17.31: a)   .)C(102.3)Cm)(400(1.50m)109.1()( 152 0   TLLα b) Pa.102.5m)(1.50m)10Pa)(1.9100.2( 9211 0   LLYTYα 17.32: a) m.105.0m)K)(12.00.35)(K102.1( 315   TLαL b) Using absolute values in Eq. (17.12),  A F Pa.108.4K)0.35)(K10Pa)(1.2100.2( 71511   TYα 17.33: a) J38)KkgJ1020()Lkg103.1)(L50.0))(C20(C37( 3   b) There will be 1200 breaths per hour, so the heat lost is J.104.6J)38)(1200( 4  17.34: s,104.1 ) W1200( )C7)(KkgJ3480)(kg70( 3      P Tmc P Q t about 24 min. 17.35: Using Q=mgh in Eq. (17.13) and solving for Τ gives .C53.0 )kg.KJ4190( )m225)(sm80.9( 2  c gh T 17.36: a) The work done by friction is the loss of mechanical energy, J.1054.1 )sm50.2( 2 1 9.36sin)m00.8)(sm80.9()kg0.35()( 2 1 3 222 2 2 1         vvmmgh b) Using the result of part (a) for Q in Eq. (17.13) gives       .C1021.1KkgJ3650kg0.35J1054.1 23   T 17.37:          J.1003.3KkgJ470kg30.0KkgJ910kg60.1C20C210 5  17.38: Assuming   ,1060.0 KQ             .C1.45 KkgJ910kg1000.8 sm80.7kg80.16 61060.0 3 2 2 1 2 2 1     mc MV mc K T 17.39:          KkgJ4190kg80.1KkgJ910kg50.1C20.0C0.85  J.1079.5 5  17.40: a)     J.1005.8K0.60KkgJ4190kg320.0 4  TmcQ b) s.402 W200 J1005.8 4   P Q t 17.41: a)       K.kgJ1051.2 C55.18C54.22kg780.0 W0.65s120 3      Tm Q c b) An overstimate; the heat Q is in reality less than the power times the time interval. 17.42: The temperature change is soK,0.18T       K.kgJ240 K0.18N4.28 J1025.1sm80.9 42        Tw gQ Tm Q c 17.43: a) KkgJ470 ,  cTmcQ We need to find the mass of 3.00 mol:     kg1675.0molkg10845.55mol00.3 3   nMm         C114K114KkgJ470kg1675.0J8950mcQT b) For  C35.6 kg,00.3 mcQTm c) The result of part (a) is much larger; 3.00 kg is more material than 3.00 mol. 17.44: (a)    kgJ000,30 kg50.0 min5.1minJ000,10 melt  m Q L F (b) Tm Q cTmcQLiquid   :          CkgJ000,1 C30kg50.0 min5.1minJ000,10 c            CkgJ1300 C15kg50.0 min0.1minJ000,10 : Tm Q cSolid 17.45: a) 0 metalwater  QQ 0 metalmetalmetalwaterwaterwater  TcmTcm         0C0.78kg500.0C0.2KkgJ4190kg00.1 metal  c KJ/kg215  metal c b) Water has a larger specific heat capacity so stores more heat per degree of temperature change. c) If some heat went into the styrofoam then metal Q should actually be larger than in part (a), so the true metal c is larger than we calculated; the value we calculated would be smaller than the true value. 17.46: a) Let the man be designated by the subscript m and the “‘water” by w, and T is the final equilibrium temperature. wwwmmm TCmTCm      wwwmmm TTCmTTCm      wwwmmm TTCmTTCm  Or solving for T, . wwmm wwwmmm CmCm TCmTCm T    Inserting numbers, and realizing we can change K to C , and the mass of water is .355 kg, we get )kgJ4190(kg)355.0()kg.J3480(kg)0.70( )0.12()kgJ4190(kg)355.0()0.37()KkgJ3480(kg)0.70( CC CCC T    Thus, .85.36 CT  b) It is possible a sensitive digital thermometer could measure this change since they can read to .C1.  It is best to refrain from drinking cold fluids prior to orally measuring a body temperature due to cooling of the mouth. 17.47: The rate of heat loss is   numbers,gInterestin.or ,. )( t Q tmC t TmC t Q ttQ         6.7or d,005.0 dayJ107 C)C)(0.15kg.Jkg)(3480355.70( 6    tt minutes. This may acount for mothers taking the temperature of a sick child several minutes after the child has something to drink. 17.48: )( f LTcmQ    Btu.136kcal34.2J1043.1 kgJ10334K)0.18)(KkgJ(4190kg)350.0( 5 3   17.49: )( Vwaterwaterficeice LTcLTcmQ  Btu.34.5kcal8.69J1064.3 kgJ102256K)kgJ)(4190C100( kgJ10334)CK)(10.0kgJ(2100 kg)100.12( 4 3 3 3              17.50: a) .min7.21 )minJ (800 K) K)(15.0kgJkg)(2100550.0(      P Tmc P Q t b) min,230 )minJ(800 )kgJ10kg)(334550.0( 3 f   P mL so the time until the ice has melted is min.252min230min 7.21  17.51:   hr.Btu102.40kW01.7 s)(86,400 )kgJ10334()kglb2.205lb)4000( 4 3   17.52: a)     kgJ102256K)K)(66.0kgJ(4190kg)100.25()( 33 v LTcm J.106.91K)K)(66.0kgJkg)(4190100.25(b) J.1033.6 334   Tmc c) Steam burns are far more severe than hot-water burns. 17.53: With KQmvKLTcmQ  setting,)2/1(and)( 2 f and solving for v gives   .sm357)kgJ105.24CK)(302.3KgJ130(2 3 v 17.54: a) g.101 )kgJ10(2.42 K)K)(1.00kgJkg)(34800.70( 6 v sweat       L TMc m b) This much water has a volume of 101 ,cm 3 about a third of a can of soda. 17.55: The mass of water that the camel saves is kg,45.3 )kgJ10(2.42 K)K)(6.0kgJkg)(3480400( 6 v      L TMc which is a volume of 3.45 L. 17.56: For this case, the algebra reduces to C.1.35 ).KkgJ4190)(kg240.0( )KkgJ390)(kg1000.3)(200(( )C0.20)(kgJ4190)(kg240.0( )C0.100)(KkgJ390))(kg1000.3)(200(( 3 3                         T 17.57: The algebra reduces to C5.27 )KkgJkg)(470(0.250 ))KkgJkg)(4190(0.170)KkgJkg)(390500.0(( C))(85.0KkgJkg)(470(0.250 C))(20.0KkgJkg)(4190(0.170)KkgJkg)(390500.0((                       T 17.58: The heat lost by the sample is the heat gained by the calorimeter and water, and the heat capacity of the sample is )Ckg)(73.9(0.0850 )C))(7.1KkgJkg)(390(0.150)KkgJkg)(4190200.0((      Tm Q c = K,kgJ1010  or KkgJ1000  to the two figures to which the temperature change is known. 17.59: The heat lost by the original water is J,10714.4)C0.45)(KkgJ4190)(kg250.0( 4  Q and the mass of the ice needed is waterwaterfice ice TcLTc Q m ice    )C0.30)(KkgJ4190()kgJ10334()C0.20(K)kgJ(2100 J)10714.4( 3 4    g.94.0kg1040.9 2   17.60: The heat lost by the sample (and vial) melts a mass m, where g.08.3 )kgJ10(334 K)))(19.5KkgJg)(2800(6.0)KkgJg)(22500.16(( 3 f     L Q m Since this is less than the mass of ice, not all of the ice melts, and the sample is indeed cooled to C.0 Note that conversion from grams to kilograms was not necessary. 17.61: kg.10.2 kg)J10334( )CK)(750kgJkg)(23400.4( 3    17.62: Equating the heat lost by the lead to the heat gained by the calorimeter (including the water-ice mixtue), .)()200( ficecucuicewPb b P LmTcmTcmmTCcm w  Solving for the final temperature T and using numerical values, C.4.21 K)kgJkg)(390100.0( K)kgJkg)(4190178.0( kgK)Jkg)(130750.0( kg)J10kg)(334018.0( )CK)(255kgJkg)(130750.0( 3                          T (The fact that a positive Celsius temperature was obtained indicates that all of the ice does indeed melt.) [...]...  10.0C 3.0  10 2 m  11 W m 2 17. 68: a) From Eq 17. 21,  H  0.040 W m  K  1040 m 2   140 K    196 W, 4.0  10 m 2 or 200 W to two figures b) The result of part (a) is the needed power input 17. 69: From Eq 17. 23, the energy that flows in time t is Ht    AT 125 ft 2 34F t  5.0 h   708 Btu  7.5  105 J R 30 ft 2  F  h Btu   17. 70: a) The heat current will be the... Solving for T gives T  90.2C 17. 74: From Eq (17. 25), with e  1, a) (5.67  108 W m 2  K 4 )(273 K) 4  315 W m 2 b) A factor of ten increase in temperature results in a factor of 10 4 increase in the output; 3.15  10 6 W m 2 17. 75: Repeating the calculation with Ts  273 K  5.0 C  278 K gives H  167 W 17. 76: The power input will be equal to H net as given in Eq (17. 26); P  Aeσ (T 4  Ts4 )... are [ W][m] W  2 [m ][K] m  K 17. 65: 100 a) 0.450Km  222 K m b)(385 W m  K)(1.25  10-4 m 2 )(400 K m)  10.7 W c)100.0C  (222 K m)(12.00  102 m)  73.3C 17. 66: Using the chain rule, H  dQ  Lf dm and solving Eq (17. 21) for k, dt dt dm L k  Lf dt AT (8.50  10 3 kg) (60.0  10 2 s)  (334  103 J kg ) (600 s) (1.250  10 4 m 2 )(100 K)  227 W m  K 17. 67: (Although it may be easier... 105 (C) 1  1.2  105 (C) 1 )(120C)  1.92  108 Pa 17. 90: In deriving Eq (17. 12), it was assumed that L  0; if this is not the case when there are both thermal and tensile stresses, Eq (17. 12) becomes F   L  L0  αT   AY   For the situation in this problem, there are two length changes which must sum to zero, and so Eq (17. 12) may be extended to two materials a and b in the form... cold spell 17. 114: Equation (17. 21) becomes H  kA T x a) H  (380 J kg  K)(2.50  104 m 2 )(140 C m)  13.3 W b) Denoting the points as 1 and 2, H 2  H1  dQ dt  mc T Solving for t T x at 2, T T mc T   x 2 x 1 kA t The mass m is ρAx, so the factor multiplying T in the above expression is t cρ k x  137 s m Then, T x  140 C m  (137 s m)(0.250 C s)  174 C m 2 17. 115: The... s) (50.2 W m  K )(0.150 m 2 ) and the temperature of the bottom of the pot is 100 C  6 C  106 C 17. 71: 17. 72: Q T  kA t L W   300 K   150 J s   50.2  A  m K   0.500 m   A  4.98  10 3 m 2 D A  πR  π   2 2 2 D  4A π  4(4.98  10 3 m 2 ) π  8.0  10 2 m  8.0 cm 17. 73: H a  H b (a  aluminum, b  brass) A(150.0C  T ) A(T  0 C) H a  ka , H b  kb La Lb (It has... C)(37 C) (70 kg)(9.8 m s 2 )   1.08  105 m  108 km 17. 99: a) (90)(100 W)(3000 s)  2.7  10 7 J Q 2.7  107 J Q    6.89 C, cm cρV (1020 J kg  K)(1.20 kg m 3 )(3200 m 3 ) or 6.9 C to the more apropriate two figures c) The answers to both parts (a) and (b) are multiplied by 2.8, and the temperature rises by 19.3 C b) ΔT  17. 100: See Problem 17. 97 Denoting C by C  a  bT , a and b independent... 0.408 kg of water 17. 108: Solving Eq (17. 21) for k, Τ (3.9  102 m)  (180 W) kH  5.0  10 2 W m  K 2 (2.18 m )(65.0 K) ΑΤ   Τ 28.0 C  (0.120 J mol.K) (2.00  0.95 m 2 )  5.0  10 2 m  1.8  10 2 m   L    93.9 W b) The flow through the wood part of the door is reduced by a factor of ( 0.50 ) 2 1  ( 2.000.95)  0.868 to 81.5 W The heat flow through the glass is 17. 109: a) H  kΑ... 45.0 W,    81.5  45.0 and so the ratio is 93.9  1.35 17. 110: R1  L k1 , R2  L k2 , H1  H 2 , and so T1  H A R1 , Τ 2  H A R2 The temperature difference across the combination is Τ  Τ1  T2  H H ( R1  R2 )  R, A A so, R  R1  R2 17. 111: The ratio will be the inverse of the ratio of the total thermal resistance, as given by Eq (17. 24) With two panes of glass with the air trapped in... 1.00 m   5.39 W b) The length of the steel rod may be found by using the above value of H in Eq 17. 21 and solving for L2 , or, since H and A are the same for the rods, L2  L 50.2 W m  K 65.0 K   0.242 m k2 T2  1.00 m  385.0 W m  K 35.0 K  k T Using H  Lv dm (see Problem 17. 66) in Eq (17. 21), dt dm L T  Lv dt kA (0.390 kg) (0.85  102 m) 3  (2256  10 J kg)  5.5 C, (180 s) (50.2 . F.28932)15 .178 )(5/9(C ,178 15.27395b)F.26032 77 F 77 C FC   TT TT 17. 11: From Eq. K.23.2715.273)C92.245(),3 .17( K T 17. 12: From. T 17. 12: From Eq. C .176 9273.15K2042.14K)3.16(7.476)(27),4 .17(  17. 13: From Eq.   mm.444)mm0.325(),4 .17( K273.16 K15.373  17. 14: On the Kelvin scale,

Ngày đăng: 10/12/2013, 12:15

TỪ KHÓA LIÊN QUAN