1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.

187 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 187
Dung lượng 7,76 MB

Nội dung

Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VŨ ĐÌNH ĐẠT NGHIÊN CỨU NÂNG CAO CHẤT LƯỢNG Ổ TỪ KIỂU LAI LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA Hà Nội - 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VŨ ĐÌNH ĐẠT NGHIÊN CỨU NÂNG CAO CHẤT LƯỢNG Ổ TỪ KIỂU LAI Ngành: Kỹ thuật điều khiển tự động hóa Mã số: 9520216 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Nguyễn Quang Địch PGS.TS Nguyễn Huy Phương LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu cá nhân tơi hướng dẫn tập thể hướng dẫn nhà khoa học Tài liệu tham khảo luận án trích dẫn đầy đủ Các kết nghiên cứu luận án trung thực chưa tác giả khác công bố Hà Nội, ngày 16 tháng 12 năm 2021 khoa học Thay mặt tập thể hướng dẫn Nghiên cứu sinh 10 11 12 13 14 15 Quang Địch PGS.TS Nguyễn Vũ Đình Đạt 16 17 LỜI CẢM ƠN 18 19 Trải qua thời gian dài, khó khăn nhiều thử thách tác giả hoàn thành luận án Trong suốt q trình đó, tác giả ln nhận giúp đỡ hỗ trợ đơn vị chuyên môn, tập thể hướng dẫn, nhà khoa học, gia đình đồng nghiệp 20 Qua tác giả muốn gửi lời cảm ơn sâu sắc tới tập thể hướng dẫn PGS.TS Nguyễn Quang Địch, PGS.TS Nguyễn Huy Phương, người định hướng, tận tình hướng dẫn chuyên môn bổ sung kịp thời kiến thức liên quan Xin chân thành cảm ơn giảng viên, nhà khoa học thuộc viện Kỹ thuật điều khiển Tự động hóa, mơn Tự động hóa cơng nghiệp (viện Điện) trường Đại học Bách khoa Hà Nội nhiệt tình giúp đỡ, có đóng góp chun môn quý báu cung cấp tài liệu tham khảo để tác giả hoàn thành luận án 21 Tác giả xin cảm ơn Viện Kỹ thuật điều khiển Tự động hóa trường Đại học Bách khoa Hà Nội hỗ trợ thiết bị thí nghiệm, hướng dẫn vận hành để tác giả hồn thành số quy trình thực nghiệm luận án 22 Tác giả xin cảm ơn tới Đảng ủy, Ban giám hiệu đồng nghiệp trường Đại học Sư phạm Kỹ thuật Hưng Yên đồng ý chủ trương, tạo điều kiện thuận lợi để tác giả xếp thời gian vừa hồn thành nhiệm vụ chun mơn vừa hồn thành luận án 23 Đặc biệt tác giả muốn gửi lời cảm ơn tới vợ, hai tồn thể gia đình, bạn bè hết lòng ủng hộ, chia sẻ tinh thần vật chất để tác giả hoàn thành tốt nội dung nghiên cứu 24 25 Tác giả luận án 26 MỤC LỤC LỜI CAM ĐOAN LỜI CẢM ƠN DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU DANH MỤC BẢNG BIỂU 11 DANH MỤC HÌNH VẼ 11 MỞ ĐẦU 14 TÍNH CẤP THIẾT CỦA ĐỀ TÀI 14 ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU 15 MỤC TIÊU NGHIÊN CỨU 15 PHƯƠNG PHÁP NGHIÊN CỨU 15 NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 15 Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN 16 BỐ CỤC VÀ NỘI DUNG CỦA LUẬN ÁN 16 CHƯƠNG TỔNG QUAN VỀ Ổ TỪ KIỂU LAI 18 1.1 KHÁI NIỆM CHUNG VỀ Ổ TỪ 18 1.1.1 Ổ từ bị động (PMB) 19 1.1.2 Ổ từ chủ động (AMB) 20 1.1.3 Ổ từ kiểu lai (HMB) 20 1.2 NGHIÊN CỨU TỔNG QUAN Ổ TỪ KIỂU LAI 21 1.2.1 Nghiên cứu cấu trúc ổ từ kiểu lai 21 1.2.2 Nguyên cứu phương pháp điều khiển ổ từ kiểu lai 25 1.3 KẾT LUẬN VÀ ĐỊNH HƯỚNG NGHIÊN CỨU 27 CHƯƠNG NGHIÊN CỨU CẤU TRÚC MỚI Ổ TỪ KIỂU LAI 28 2.1 Ổ TỪ KIỂU LAI KHÔNG CÓ KHE HỞ PHỤ 28 2.1.1 Cấu trúc ổ từ kiểu lai khơng có khe hở phụ 28 2.1.2 Phân tích mơ hình phương pháp mô phần tử hữu hạn 30 2.1.3 Phân tích so sánh kết 34 2.2 Ổ TỪ KIỂU LAI KHE HỞ PHỤ 36 2.2.1 Cấu trúc ổ từ kiểu lai khe hở phụ .36 2.2.2 Phương pháp tính tốn mạch từ tương đương 37 2.2.3 Phương pháp mô phần tử hữu hạn 39 2.2.4 Phân tích đánh giá kết .40 2.3 Ổ TỪ KIỂU LAI KHE PHÂN CÁCH 42 2.3.1 Cấu trúc ổ từ kiểu lai khe phân cách 43 2.3.2 Phương pháp tính tốn mạch từ tương đương 45 2.3.3 Phương pháp mô phần tử hữu hạn 51 2.3.4 So sánh ổ từ kiểu lai khe phân cách ổ từ kiểu lai khe hở phụ .55 2.4 KẾT LUẬN CHƯƠNG .58 2.4.1 .C HƯƠNG NGHIÊN CỨU THIẾT KẾ HỆ ĐIỀU KHIỂN CHO Ổ TỪ KIỂU LAI KHE PHÂN CÁCH 59 3.1 XÂY DỰNG MƠ HÌNH TỐN HỌC 59 3.1.1 Mô tả hệ thống ổ từ kiểu lai khe phân cách .59 3.1.2 Xây dựng mơ hình tốn học hệ thống ổ từ kiểu lai khe phân cách 60 3.2 XÂY DỰNG HỆ ĐIỀU KHIỂN TUYẾN TÍNH PHẢN HỒI TẬP TRUNG PD .65 3.2.1 Thiết kế hệ điều khiển PD 65 3.2.2 Mô đánh giá hệ điều khiển PD .71 3.3 XÂY DỰNG HỆ ĐIỀU KHIỂN PHI TUYẾN DỰA TRÊN BỘ ĐIỀU KHIỂN TRƯỢT 75 3.3.1 Thiết kế hệ điều khiển trượt .75 3.3.2 Mô đánh giá hệ điều khiển trượt 81 3.4 KẾT LUẬN CHƯƠNG .87 2.4.2 .C HƯƠNG XÂY DỰNG MƠ HÌNH THỰC NGHIỆM VÀ CÁC KẾT QUẢ THỰC NGHIỆM 88 4.1 GIỚI THIỆU MÔ HÌNH THỰC NGHIỆM 88 4.2 CƠ CẤU CHẤP HÀNH CỦA HỆ THỐNG Ổ TỪ KIỂU LAI KHE PHÂN CÁCH 89 4.2.1 Stator ổ từ kiểu lai khe phân cách .89 4.2.2 Rotor ổ từ kiểu lai khe phân cách 90 4.3 PHẦN CỨNG CỦA HỆ ĐIỀU KHIỂN Ổ TỪ KIỂU LAI KHE PHÂN CÁCH 92 4.3.1 Mô tả phần cứng hệ điều khiển ổ từ kiểu lai khe phân cách 92 4.3.2 Bộ biến đổi công suất 93 4.3.3 Cảm biến khoảng cách .95 4.3.4 Mơ hình hồn thiện hệ thống ổ từ kiểu lai khe phân cách 97 4.4 KẾT QUẢ THỰC NGHIỆM VÀ ĐÁNH GIÁ 98 4.4.1 Rotor trạng thái tĩnh không quay 98 4.4.2 Rotor trạng thái quay 99 4.4.3 Khi rotor thay đổi tải trọng có tác động nhiễu lực bên 100 4.5 KẾT LUẬN CHƯƠNG .102 2.4.3 .KẾT LUẬN VÀ KIẾN NGHỊ 104 2.4.4 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 106 2.4.5 TÀI LIỆU THAM KHẢO .107 2.4.6 PHỤ LỤC .114 DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU 2.4.7 2.4.8 Danh mục từ viết tắt 2.4.9 2.4.10 2.4.11 Từ STT viết tắt 2.4.12 Anh Ý nghĩa tiếng 2.4.13 Việt Ý nghĩa tiếng 2.4.14 2.4.15 AMB 2.4.16 Active Magnetic Bearing 2.4.17 Ổ từ chủ động 2.4.18 2.4.19 COM 2.4.20 Center Of Mass 2.4.21 Khối tâm rotor 2.4.22 2.4.23 DOF 2.4.25 Bậc tự 2.4.24 Degrees Of Freedom 2.4.28 Equivalent Magnetic 2.4.26 2.4.27 EMC Circuit Method M 2.4.29 Phương pháp mạch từ tương đương 2.4.30 2.4.31 FEM 2.4.33 Phương pháp phần tử hữu hạn 2.4.32 Finite Element Method 2.4.34 2.4.35 HMB 2.4.36 Hybrid Magnetic Bearing 2.4.40 Multiple-Input, 2.4.38 2.4.39 MIM Multiple- Output O 2.4.37 Ổ từ kiểu lai 2.4.42 2.4.43 PMB 2.4.44 Passive Magnetic Bearing 2.4.45 Ổ từ bị động 2.4.46 2.4.47 PWM 2.4.48 Pulse Width Modulation 2.4.49 Điều chỉnh độ rộng xung 2.4.50 2.4.51 SISO 2.4.52 Single-Input, Single10 Output 2.4.54 2.4.41 Nhiều đầu vào nhiều đầu 2.4.53 Một đầu vào đầu Danh mục ký hiệu 2.4.55 2.4.56 STT 2.4.57 Ký hiệu 2.4.58 Đ ơn vị 2.4.59 Ý nghĩa 2.4.60 2.4.61 B 2.4.62 T 2.4.63 Mật độ từ thông 2.4.64 2.4.65 H 2.4.66 A 2.4.67 Cường độ từ trường /m 2.4.68 2.4.69 Fpm 2.4.70 A 2.4.71 Sức từ động nam châm 2.4.72 2.4.73 Rst 2.4.74 2.4.75 Từ trở gông thép stator trái phải /H 2.4.76 2.4.77 Rag 2.4.78 2.4.79 Từ trở khe hở khơng khí cực từ rotor /H 2.4.80 2.4.81 2.4.82 Rrt 2.4.83 2.4.84 Từ trở rotor /H 2.4.85 2.4.86 Rt1 2.4.87 2.4.88 Từ trở mạch từ (trường hợp 1) /H 2.4.89 2.4.90 Rt2 2.4.91 2.4.92 Từ trở mạch từ (trường hợp 2) /H 2.4.93 2.4.94 Rsa 2.4.95 2.4.96 Từ trở khe hở phụ /H 2.4.98 2.4.991 2.4.100 2.4.101 Wb Từ thông mạch từ (trường hợp 1) 2.4.103 2.4.102 2.4.104 11 2.4.105 2.4.106 Wb Từ thông mạch từ (trường hợp 2) 2.4.107 2.4.108 12 F1 2.4.109N 2.4.110 Lực từ nam châm vĩnh cửu sinh 2.4.111 2.4.112 13 F2 2.4.113 N 2.4.114 Lực từ cuộn dây điều khiển sinh 2.4.115 14 2.4.116 F 2.4.117 N 2.4.118 Tổng lực từ tác dụng lên rotor 2.4.120 2.4.119 2.4.121 15 2.4.122 2.4.123 H/m 2.4.127 2.4.128 châm Độ từ thẩm chân không 2.4.129 2.4.130 17 NI 2.4.131A 2.4.132 Sức từ động cuộn dây điều khiển 2.4.133 2.4.134N 18 2.4.135 2.4.136 vòng Số vòng dây cuộn dây điều khiển 2.4.97 10 2.4.125 2.4.124 2.4.126 u 16 Hệ số từ thẩm tương đối nam 2.4.137 2.4.138 19 Ag 2.4.139m 2.4.140 2.4.141 2.4.142 20 ix 2.4.143A 2.4.144 Dòng điện điều khiển vị trí rotor cân 2.4.145 2.4.146 21 ix 2.4.147A 2.4.148 Lượng thay đổi dòng điện điều khiển rotor dịch chuyển khoảng x Khoảng cách khe hở phụ (fz) tượng từ trễ mà tập thể hướng dẫn gợi ý “Ảnh hưởng từ trễ tới tốc độ quay ổ từ kiểu lai khe phân cách phương pháp khắc phục” định hướng nghiên cứu 101 73 (ga) (gc) KẾT LUẬN VÀ KIẾN NGHỊ (gb) Luận án trình bày tổng quan tình hình nghiên cứu nước lĩnh vực thiết kế chế tạo ổ từ kiểu lai Phân tích so sánh ưu nhược điểm loại ổ tử kiểu lai, từ lựa chọn loại ổ từ kiểu lai bốn cực tách kênh đường dẫn từ thông với ưu điểm dễ dàng điều khiển độ ổn định cao làm đối tượng tập trung nghiên cứu phát triển Qua bước nghiên cứu phân tích, hai loại ổ từ kiểu kiểu lai đề xuất, ổ từ kiểu lai khe hở phụ ổ từ kiểu lai khe phân cách Ổ từ kiểu lai khe phân cách với ưu điểm giảm từ trường tản tăng đường dẫn từ thông mạch từ lựa chọn Sau tiến hành xây dựng mơ hình tốn học cho hệ thống ổ từ kiểu lai khe phân cách, có tính tới ảnh hưởng tốc độ quay Từ mơ hình tốn học, cấu trúc điều khiển đề xuất Ứng dụng thuật tốn điều khiển tuyến tính PD điều khiển phi tuyến dựa điều khiển trượt cho kết điều khiển hệ thống ổn định (gd) Các kết đóng góp luận án bao gồm: 1- Nghiên cứu phát triển cấu trúc ổ từ kiểu lai (ổ từ kiểu lai khe phân cách), thỏa mãn tiêu chí không xen kênh từ thông, giảm từ trường tản, mở rộng đường dẫn từ thông, tiết kiệm lượng, độ ổn định cao dễ dàng điều khiển 2- Xây dựng mơ hình tốn học ổ từ kiểu lai khe phân cách có kể đến ảnh hưởng tốc độ quay rotor 3- Xây dựng điều khiển tuyến tính phi tuyến để minh chứng hoạt động hệ thống ổ từ kiểu lai khe phân cách Kết hệ thống đạt ổn định với hai điều khiển 4- Xây dựng mơ hình thực nghiệm hệ thống ổ từ kiểu lai khe phân cách thực thuật tốn điều khiển PD tảng mơ hình thực nghiệm Kết hệ thống làm việc ổn định điều kiện tốc độ khác nhau, không bị ảnh hưởng xen kênh chuyển động ổn định với tác động nhiễu lực bên (gf) (gg) (ge) Kiến nghị: Bản luận án hoàn thiện từ nghiên cứu lý thuyết tới thực nghiệm, đảm bảo tính lý luận phù hợp với luận án tiến sĩ ngành Điều khiển Tự động hóa Tác giả mong người đọc góp ý để hồn thiện Và mong muốn đưa bảo vệ cấp trường (gh) Định hướng nghiên cứu tiếp theo: (gi) Áp dụng điều khiển trượt để điều khiển cho mơ hình thực nghiệm hệ thống ổ từ kiểu lai khe phân cách nghiên cứu ảnh hưởng tượng từ trễ rotor chuyển động với tốc độ cao (gj) DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN (gk) [1] Vũ Đình Đạt, Nguyễn Anh Tuấn, Luyện Thế Thạnh (2015), Research to improve the quality of hybrid active magnetic bearing, Tạp chí Khoa Học cơng nghệ Trường Đại học Sư phạm Kỹ thuật Hưng yên, ISSN 2354-0575, số 8, trang 5763 (gl) [2] Vũ Đình Đạt, Nguyễn Quang Địch, Nguyễn Huy Phương (2017), Phân tích đề xuất cấu trúc cho ổ đỡ từ chủ động kiểu lai, Hội nghị - Triển lãm quốc tế lần thứ Điều khiển Tự động hóa VCCA-2017 (gm) [3] Vũ Đình Đạt, Nguyễn Quang Địch, Giang Hồng Quân (2017), Tính tốn ổ đỡ từ sử dụng phương pháp phần tử hữu hạn, Hội thảo điều khiển tự độ hóa cho phát triển bền vững CASD-2017 (gn) [4] Vũ Đình Đạt, Nguyễn Quang Địch, Nguyễn Huy Phương (2020), Phân tích so sánh cấu trúc ổ từ cực kiểu lai hai bậc tự do, Chuyên san Đo lường, Điều khiển Tự động hóa , ISSN 1859-0551, vol.1 (2) (2020) (go) [5] Vũ Đình Đạt, Nguyễn Quang Địch, Nguyễn Huy Phương (2021), Đánh giá hoạt động ổ từ kiểu lai có khe hở phụ đề xuất phương án cải tiến, Chuyên san Đo lường, Điều khiển Tự động hóa , ISSN 1859-0551, vol.1 (2) (2020) (gp) [6] Vũ Đình Đạt, Nguyễn Quang Địch, Nguyễn Huy Phương (2021), Modeling and Control of a Novel Structure of the 4DOF-Hybrid Magnetic Bearings, Chuyên san Đo lường, Điều khiển Tự động hóa, ISSN 1859-0551, Vol.2 (1) (2021) (gq)TÀI [1] LIỆU THAM KHẢO (gr) LANG, Matthias; LEMBKE, Torbjorn A Design of permanent magnet bearings with high stiffness In: Tenth International Symposium On Magnetic Bearings 2006 p 45-48 [2] Max Eirich et.,al., Experimental study on the adjustability of radial stiffness in a repulsive magnetic bearing device, Proceeding of the 11th International Symposium on Magnetic Bearings, Nara, Japan, 2008, pp 307-311 [3] chweitzer G., Active Magnetic Bearing – Chances and Limitations, International Centre for Magnetic Bearings, CH-8092, Zurich [4] Agarwal, P.K.; Chand, S., Fuzzy logic control of four-pole active magnetic bearing system, IEEE International Conference on Modelling, Identification and Control (ICMIC), Okayama, pp 533-538, July 2010 [5] T Ohji, S Ichiyama, K Amei, et al., A new conveyor system based on a passive magnetic levitation unit having repulsive-type magnetic bearings, Journal of Magnetism and Magnetic Materials (2004) e1731–e1733 [6] A Hamler, V Gorican, B Stumberger, et al., Passive magnetic bearing, Journal of Magnetism and Magnetic Materials (2004) 2379–2380 [7] Akira Chiba, adashi Fukao,Osamu Ichikawa, Masahide Oshima, asatsugu Takemoto and David G Dorrell, Magnetic Bearings and Bearingless Drives, Newnes, 2005 [8] J.Schmied Experience with magnetic bearings support in gas pipeline compressor, Proc Of the 10th International Symposium on Magnetic Bearings, August 2006,Martigny, Switzerland, pp 292-297 [9] M Neff, N Barletta and R Schoeb Bearingless Centrifugal Pump for Highly Pure Chemicals, Proc Of the 8th International Symposium on Magnetic Bearings, August 2002, Mito, Japan, pp.283-287 [10] T Shinshi et al., A Mini-Centrifugal Blood Pump Using 2-DOF Controlled Magnetic Bearing Proc Of the 11th International Symposium on Magnetic Bearings, August 2008, Nara, Japan, pp 274-279 [11] O Masahiro et al., Miniaturized Magnetically Levitated Motor for Pediatric Artificial Heart, Proc Of the 12th International Symposium on Magnetic Bearings, August 2010, Wuhan, China, pp 674-679 [12] Liu Shuqin, Fundamental and Advanced Topics in Wind Power, book edited by Rupp Carriveau, ISBN 978-953-307-508-2, Published: July 5, 2011 under CC BY-NC-SA [13] Adam Pilat, PD Control Strategy for Coil AMB, in Proceedings of 10th International Symposium on Magnetic Bearings, Switzerland, pp 34-39, August, 2006 [14] Vadillo Javier et al., An Approach to a 3-pole Active Magnetic Bearing System fed by a Matrix Converter, in Proceedings of 12th International Symposium on Magnetic Bearings, Nara, pp 518-525, July, 2008 [15] M Dussaux, The industrial application of the active magnetic bearing technology, in Proceedings of 2nd International Symposium on Magnetic Bearings, Tokyo, pp 33-38, July, 1990 [16] Matsuda, K Kanemitsu, Y Kijimoto, S., Optimal Number of Stator Poles for Compact Active Radial Magnetic Bearings, IEEE Transactions on Magnetics, Vol 43, No 8, pp 3420-3427, 2007 [17] Agarwal, P.K.; Chand, S., Fuzzy logic control of four-pole active magnetic bearing system, IEEE International Conference on Modelling, Identification and Control (ICMIC), Okayama, pp 533-538, July 2010 [18] Shahir Rasheed RP, R Sathiya Moorthy, Analysis of Hybrid Magnetic Bearing for High Speed Spindle, Int Journal of Applied Sciences and Engineering Research, Vol 2, No 5, 2013 [19] Sun Jinji, Fang Jiancheng , A novel structure of permanent-magnet-biased radial hybrid magnetic bearing, Journal of Magnetism and Magnetic Materials 323 (2011) 202-208 [20] Brian T Murphy, Hamid Ouroua, Matthew T Caprio, John D Herbst, Permanent magnet bias, homopolar magnetic bearings for a 130 kW-hr composite flywheel, in: Proceedings of the Ninth International Symposium on Magnetic Bearings, Lexingtong Kentucky, USA, pp 66–72, August 3–6 2004 [21] Xu Yanliang, Dun Yueqin, Wang Xiuhe, et al., Analysis of hybrid magnetic bearing with a permanent magnet in the rotor by FEM, IEEE Transactions on Magnetics 42 (4) (2006) 1363–1366.Humberto Ferreira Vinhais, Paulo Henrique de Godoy, Emilio Carlos Nelli Silva (2006), “Optimized design of an electrostatic side-drive micromotor”, ABCM Symposium Series in Mechatronics, 2, pp 433-450 [22] Wei-Yu Zhang and Huang-Qiu Zhu, Accurate Parameter Design for Radial AC Hybrid Magnetic Bearing, International Journal of Precision Engineering and Manufacturing Vol 15, No 4, pp 661-669 [23] Cheol Hoon Park, Sang Kyu Choi, Jun Young Park and Dong Won Yun , Design and control for hybrid magnetic thrust bearing for turbo refrigerant compressor, Automation Science and Engineering (CASE), 2011 IEEE Conference [24] Shanbao Cheng and Steven W.day, Design and control of hybrid magnetic bearings for maglev axial flow blood pump, Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference) [25] R.B Zmood, L.J Qin, J.A Kirk, et al., A magnetic bearing system design methodology and its application to a 50Wh open core composite flywheel, in: Proceedings of the Energy Conversion Engineering Conference 32nd Intersociety, vol 27 (4), August 1997, pp 2306–2311 [26] Alexei V Filatov, Patrick T McMullen, Lanvence A Hawking, et al., Magnetic bearing actuator design for a gas expander generator, in: Proceedings of the Ninth International Symposium on Magnetic Bearings, Lexington Kentucky, USA, pp 81–86, August 3–6, 2004 [27] Hiroyuki Onuma, Iruma (JP); Toru MasuzaWa, Hitachi (JP); Yohji Okada, Hitachi (JP), Hybrid Magnetic Bearing ( United States Patent Patent - No: US 7,683,514 B2 -Date of Patent: Mar 23, 2010) [28] POLAJŽER, B., et al Decentralized PI/PD position control for active magnetic bearings Electrical Engineering, 2006, 89.1: 53-59 [29] YANG, Guang; ZHANG, Jian Min Pd control strategy design and simulation of magnetic bearing with single freedom of degree In: Advanced Materials Research Trans Tech Publications Ltd, 2013 p 1207-1211 [30] Kascak A F., Brown G V., Jansen R H., Dever T P Stability limits of a PD controller for a flywheel supported on rigid rotor and magnetic bearings Proceedings of AIAA Guidance, Navigation, and Control Conference, San Francisco, USA, 2005, p 1144-1155 [31] PSONIS, Theodore K.; NIKOLAKOPOULOS, Pantelis G.; MITRONIKAS, Epaminondas Design of a PID controller for a linearized magnetic bearing International Journal of Rotating Machinery, 2015 [32] Okada Y., Nagai B., Shimane T Cross-feedback stabilization of the digitally controlled magnetic bearing Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol 114, Issue 1, 1992, p [33] Shimane T., Nagai B., Okada Y High-speed gyroscopic instability and cross- feedback compensation of a digitally controlled magnetic bearing Transactions of the Japan Society of Mechanical Engineers, Part C, Vol 56, Issue 528, 1990, p 2079-2084, (in Japanese) [34] Brown G V., Kascak A., Jansen R H., Dever T P., Duffy K P Stability gyroscopic modes in magnetic bearing supported flywheels by using crossaxis proportional gains Proceedings of AIAA Guidance, Navigation and Controls Conference, San Francisco, USA, 2005, p 1132-1143 [35] Fang, Jiancheng, and Yuan Ren High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method IEEE Transactions on Industrial Electronics 58.9 (2010): 4331-4342 [36] Ren, Yuan, and Jiancheng Fang Modified cross feedback control for a magnetically suspended flywheel rotor with significant gyroscopic effects Mathematical Problems in Engineering 2014 (2014) [37] TSHIZUBU, Christian; SANTISTEBAN, José Andrés A simple PID controller for a magnetic bearing with four poles and interconnected magnetic flux In: 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP) IEEE, 2017 p 430-435 [38] Dever, Timothy, et al Modeling and development of magnetic bearing controller for high speed flywheel system 2nd International Energy Conversion Engineering Conference 2004 110 [39] Dimond, Timothy, et al Modal tilt/translate control and stability of a rigid rotor with gyroscopics on active magnetic bearings International Journal of Rotating Machinery 2012 (2012) [40] Chen, Liangliang, et al Vibration control for active magnetic bearing high- speed flywheel rotor system with modal separation and velocity estimation strategy Journal of Vibroengineering 17.2 (2015): 757-775 [41] Wei, Chunsheng, and Dirk Söffker Optimization strategy for PID-controller design of AMB rotor systems IEEE transactions on control systems technology 24.3 (2015): 788-803 [42] Shata, Ahmed, et al A particle swarm optimization for optimum design of fractional order PID Controller in Active Magnetic Bearing systems 2016 Eighteenth International Middle East Power Systems Conference (MEPCON) IEEE, 2016 [43] Shata, Ahmed Mohamed Abdel-Hafez, et al A fractional order PID control strategy in active magnetic bearing systems Alexandria engineering journal 57.4 (2018): 3985-3993 [44] J.C Doyle., Guaranteed margins for LQG regulators, in: IEEE Transactions on Automatic Control, AC-23(4):756–757, August 1978 [45] Zhang K., Zhao L., Zhao H B LQR method research on control of the flywheel system suspended by AMBs Journal of Mechanical Engineering, Vol 40, Issue 2, 2004, p 127-131 [46] Tian Ye, Sun Yanhua, Yu Lie., LQG Control of Hybrid Foil-Magnetic Bearing, in: 12th International Symposium on Magnetic Bearings, 2010 [47] G J Balas, J C Doyle, K Glover, A K Packard, and R Smith., μ Analysis and Synthesis Toolbox User’s Guide, in: The MathWorks, Natick, MA, 1995 [48] F Matsumura, T Namerikawa, K Hagiwara and M Fujita., Application of Gain Scheduled H∞ Robust Controllers to a Magnetic Bearing, in: IEEE Trans Control Systems Technology, vol 4, no 5, pp 484-493, 1996 [49] Amin Noshadi, Juan Shi, WeeSit Lee, Peng Shi, Akhtar Kalam., High performance H∞ control of non-minimum phase Active Magnetic Bearing system, in: IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society 111 81 [50] Nonami K., Ito T µ-synthesis of flexible rotor-magnetic bearing systems IEEE Transactions on Control Systems Technology, Vol 4, Issue 5, 1996, p 503-512 [51] Lanzon A., Tsiotras P A combined application of H∞ loop shaping and μ- synthesis to control high-speed flywheels IEEE Transactions on Control Systems Technology, Vol 13, Issue 5, 2005, p 766-777 [52] [56] Sivrioglu S., Nonami K LMI approach to gain scheduled H∞ control beyond PID control for gyroscopic rotor magnetic bearing system Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996, p 3694-3699 [53] Duan G., Howe D Robust magnetic bearing control via eigenstructure assignment dynamical compensation IEEE Transactions on Control Systems Technology, Vol 11, Issue 2, 2003, p 204-215 [54] Dever T P., Brown G V., Duffy K P., Jansen R H Modeling and development of a magnetic bearing controller for a high speed flywheel system Proceedings of 2nd International Energy Conversion Engineering Conference, Providence, RI, United states, 2004, p 888-899 [55] Sivrioglu S., Nonami K Sliding mode control with time-varying hyper-plane for AMB systems IEEE/ASME Transaction on Mechatronics, Vol 3, Issue 1, 1998, p 51-59 [56] Rundell A E., Drakunov S V., DeCarlo R A A sliding mode observer and controller for stabilization of rotational motion of a vertical shaft magnetic bearing IEEE Transactions on Control Systems Technology, Vol 4, Issue 5, 1996, p 598-608 [57] CHEN, Syuan-Yi; LIN, Faa-Jeng Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system IEEE Transactions on Control Systems Technology, 2010, 19.3: 636-643 [58] LIN, F.-J.; CHEN, S.-Y.; HUANG, M.-S Intelligent double integral sliding- mode control for five-degree-of-freedom active magnetic bearing system IET control Theory & applications, 2011, 5.11: 1287-1303 [59] Kang, Min Sig, Joon Lyou, and Jong Kwang Lee Sliding mode control for an active magnetic bearing system subject to base motion Mechatronics 20.1 (2010): 171-178 [60] Mao, Jing Feng, et al Sliding mode control of magnetic bearing system based on variable rate reaching law Key Engineering Materials Vol 460 Trans Tech Publications Ltd, 2011 [61] Tsai, Yao-Wen, and Viet Anh Duong Sliding mode control for active magnetic bearings of a flywheel energy storage system 2016 IEEE International Conference on Control and Robotics Engineering (ICCRE) IEEE, 2016 [62] Utkin, Vadim, and Hoon Lee Chattering problem in sliding mode control systems International Workshop on Variable Structure Systems, 2006 VSS'06 IEEE, 2006 [63] Tang, Jiqiang, Jiancheng Fang, and Shuzhi Sam Ge Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel Physica C: Superconductivity 483 (2012): 178-185 [64] Yoon, Se Young, Zongli Lin, and Paul E Allaire Control of surge in centrifugal compressors by active magnetic bearings: Theory and implementation Springer Science & Business Media, 2012 [65] Yao, Xuan, and Zhaobo Chen Sliding mode control with deep learning method for rotor trajectory control of active magnetic bearing system Transactions of the Institute of Measurement and Control 41.5 (2019): 13831394 [66] PHỤ LỤC [67] 1- Cấu trúc ổ từ kiểu lai khe phân cách [68] [69] 111 84 [70] 1- Cực từ kiểu lai khe phân cách [71] [72] 1- Nam châm rotor ổ từ kiểu lai khe phân cách [73] [74] 1- Lõi cực từ kiểu lai khe phân cách [75] [76] ... loại ổ từ chủ động ổ từ bị động, ổ từ kiểu lai đối tượng nghiên cứu đề tài Trong phần trình bày nghiên cứu tổng quan ổ từ kiểu lai - Hình 1.5 Cấu tạo ổ từ kiểu lai 1.2 Nghiên cứu tổng quan ổ từ kiểu. .. - Nghiên cứu ổ từ kiểu lai thường tập trung vào hai hướng nghiên cứu chính, nghiên cứu cấu trúc ổ từ kiểu lai nghiên cứu phương pháp điều khiển ổ từ kiểu lai 1.2.1 Nghiên cứu cấu trúc ổ từ kiểu. .. Do nghiên cứu cấu trúc ổ từ kiểu lai nghiên cứu số lượng cực từ cách bố trí nam châm điện nam châm vĩnh cửu cực từ ổ từ kiểu lai 1.2.1.1 Số lượng cực từ - Theo số lượng cực từ, ổ từ kiểu lai có

Ngày đăng: 28/12/2021, 13:37

HÌNH ẢNH LIÊN QUAN

- Hình 1.3 Cấu tạo ổ từ bị động dạng đẩy - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 1.3 Cấu tạo ổ từ bị động dạng đẩy (Trang 31)
- Hình 1.2 Cấu tạo ổ từ - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 1.2 Cấu tạo ổ từ (Trang 31)
- Hình 1.4 Cấu tạo ổ từ chủ động - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 1.4 Cấu tạo ổ từ chủ động (Trang 32)
- Hình 1.5 Cấu tạo ổ từ kiểu lai - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 1.5 Cấu tạo ổ từ kiểu lai (Trang 33)
- Hình 1.7 Cấu trúc ổ từ kiểu lai dạng 1 - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 1.7 Cấu trúc ổ từ kiểu lai dạng 1 (Trang 35)
- Hình 2.2 Mô hình cực từ kiểu lai không có khe hở phụ - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.2 Mô hình cực từ kiểu lai không có khe hở phụ (Trang 44)
2.1.2 Phân tích mô hình bằng phương pháp mô phỏng phần tử hữu hạn - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
2.1.2 Phân tích mô hình bằng phương pháp mô phỏng phần tử hữu hạn (Trang 46)
- Hình 2.9 Lực từ tác dụng lên rotor theo dòng điện - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.9 Lực từ tác dụng lên rotor theo dòng điện (Trang 51)
- Hình 2.16 Lực từ tác dụng lên rotor theo dòng điện - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.16 Lực từ tác dụng lên rotor theo dòng điện (Trang 61)
- Hình 2.19 Lực từ tác dụng lên rotor theo dòng điện (EMCM & FEM) - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.19 Lực từ tác dụng lên rotor theo dòng điện (EMCM & FEM) (Trang 64)
(a) Hình chiếu trục đo (b) Hình cắt - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
a Hình chiếu trục đo (b) Hình cắt (Trang 67)
- Hình 2.25 Mạch từ phần cực từ bên ngoài - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.25 Mạch từ phần cực từ bên ngoài (Trang 75)
 Hình 2.29 Lực hướng tâm biến đổi theo dòng điện điều khiển - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.29 Lực hướng tâm biến đổi theo dòng điện điều khiển (Trang 88)
 Hình 2.32 Lực tác tác dụng theo dòng điện của hai loại ổ từ - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 2.32 Lực tác tác dụng theo dòng điện của hai loại ổ từ (Trang 92)
3.1 Xây dựng mô hình toán học - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
3.1 Xây dựng mô hình toán học (Trang 96)
3.1.2 Xây dựng mô hình toán học hệ thống ổ từ kiểu lai khe phân cách - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
3.1.2 Xây dựng mô hình toán học hệ thống ổ từ kiểu lai khe phân cách (Trang 98)
 Hình 3.4 Tập hợp trị riêng vớ i từ 0-11400 vòng/phút - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 3.4 Tập hợp trị riêng vớ i từ 0-11400 vòng/phút (Trang 119)
 Hình 3.5 Chuyển động tịnh tiến của rotor khi =0 - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 3.5 Chuyển động tịnh tiến của rotor khi =0 (Trang 121)
 Hình 3.6 Chuyển động quay của rotor khi =0 - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 3.6 Chuyển động quay của rotor khi =0 (Trang 122)
 Hình 3.8 Chuyển động quay của rotor khi =6000 vòng/phút - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 3.8 Chuyển động quay của rotor khi =6000 vòng/phút (Trang 125)
 Hình 3.9 Chuyển động quay của rotor khi =10500 vòng/phút - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 3.9 Chuyển động quay của rotor khi =10500 vòng/phút (Trang 126)
Hình 3.12 Chuyển động tịnh tiến của rotor theo trụ cx - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
Hình 3.12 Chuyển động tịnh tiến của rotor theo trụ cx (Trang 143)
(ad) Hình 4.3 Stator ổ từ kiểu lai khe phân cách - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
ad Hình 4.3 Stator ổ từ kiểu lai khe phân cách (Trang 153)
(ar) Hình 4.6 Cơ cấu chấp hành hệ thống ổ từ kiểu lai khe phân cách đã chế tạo - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
ar Hình 4.6 Cơ cấu chấp hành hệ thống ổ từ kiểu lai khe phân cách đã chế tạo (Trang 154)
(au) Hình 4.7 Sơ đồ mô tả hệ thống điều khiển cho ổ từ kiểu lai khe phân cách (av)Chức năng cơ bản của các khối như sau: - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
au Hình 4.7 Sơ đồ mô tả hệ thống điều khiển cho ổ từ kiểu lai khe phân cách (av)Chức năng cơ bản của các khối như sau: (Trang 155)
(bn) Hình 4.8 Mạch cầ uH của bộ biến đổi công suất - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
bn Hình 4.8 Mạch cầ uH của bộ biến đổi công suất (Trang 157)
(cf) Hình ảnh đầu đo cảm biến VS-020L (Shinkawa) khi được tích hợp vào hệ thống ổ - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
cf Hình ảnh đầu đo cảm biến VS-020L (Shinkawa) khi được tích hợp vào hệ thống ổ (Trang 161)
(ck) Sau khi xác định cấu trúc mô hình thực nghiệm, dựa trên các kết quả tính toán đi tới thiết kế chế tạo các module - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
ck Sau khi xác định cấu trúc mô hình thực nghiệm, dựa trên các kết quả tính toán đi tới thiết kế chế tạo các module (Trang 162)
4.3.4 Mô hình hoàn thiện hệ thống ổ từ kiểu lai khe phân cách - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
4.3.4 Mô hình hoàn thiện hệ thống ổ từ kiểu lai khe phân cách (Trang 162)
(fh) Hình 4.15 Thực nghiệm thay đổi tải trọng - Nghiên cứu nâng cao chất lượng ổ từ kiểu lai.
fh Hình 4.15 Thực nghiệm thay đổi tải trọng (Trang 168)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w