Search for VH prodiuction in the ET +b-jets signature in the full CDF dataset K Potamianos†, D Bortoletto, Q Liu (Purdue) O Gonz´alez (CIEMAT) F Margaroli (Rome La Sapienza) K Knoepfel, B Kilminster, M Kirby (FNAL) H Wolfe (OSU) February 27, 2012 Abstract We present a search for a low-mass SM Higgs boson produced in association with a vector boson (VH) where H decays to b¯b and the vector boson decays escape detection We are sensitive to ZH → ννb¯b, W H → ℓνb¯b (with the lepton not identified), and to a much lesser extent to ZH → ℓℓb¯b This search is an update of the search using 7.8 fb−1 of CDF data presented at EPSHEP2011 with the full CDF dataset, i.e 9.45 fb−1 Improvements include a new determination of the jet energy corrections, which now depends on the type of the jet (quark jet or gluon jet), as well as the use of an artificial neural network to improve the jet energy resolution Observing no significant excess in the data, we set 95% confidence level upper limits on the V H production cross-section times branching fraction to b¯b for values of the Higgs mass (mH ) between 90 and 150 GeV/c2 For mH = 125 GeV/c2 , we set an observed (expected) limit of 6.7 (3.6) times the SM prediction We re-interpret this result in a search for W Z + ZZ production, with Z → b¯b, and measure a cross-section compatible with SM prediction Introduction This note describes the updates to the search for the SM Higgs boson in the ET +b-jets signature using 7.8 fb−1 described in [1] Additional details are also provided in previous notes (CDF10507, CDF10538, and CDF10583) This iteration of the analysis includes a new prescription for the jet energy corrections applied to gluon jets, an N N designed to improve the jet energy resolution, as well as an expanded good run list Jet energy resolution The previous version of the ET +b¯b analysis used a jet-energy algorithm where the calorimeter energies were adjusted according to the energy inferred from tracks within the jet cone (H1 algorithm) Although such a method improved the jet energy resolution by accounting for † karolos@fnal.gov energy leakage, various assumptions were made that led to less than optimal determination of the jet energy To improve the energy determination, a neural-network approach has been developed to correct the measured jet energies to the quark-energy level The inputs to the jet energy neural network N NJ ER are listed in Table Each of the variables is well-validated in a dedicated control region The neural network is trained using the two most energetic jets from ZH → ℓ+ ℓ− b¯b, W H → ℓνb¯b, and ZH → ν ν¯b¯b signal events for Higgs masses in the full low-mass Higgs range of 100 ≤ mH ≤ 150 GeV/c2 at GeV increments To avoid correcting jet energies to an average characteristic energy, each training event receives a weight such that the cumulative jet ET distribution is flat A more detailed description of the N NJ ER is presented in CDF10591 Variable Raw ET L5 mT H1 ET π Energy EM Fraction Jet η Maximum Track pT Sum Track pT Description Uncorrected transverse jet energy Transverse jet mass corrected to hadronic level H1-corrected transverse jet energy CES detector energies of π candidates within jet cone Fraction of jet energy collected in EM calorimeter Jet pseudorapidity Maximum transverse momentum of track within jet cone Linear sum of transverse momenta of tracks within jet cone Table 1: Description of the N NJER input variables For this analysis, the N NJ ER algorithm is implemented by correcting the H1-determined ET to an N NJ ER determination An analysis cut of ET (N NJ ER ) > 35 GeV is applied to reduce multijet background, the dominant background contribution in this analysis As seen in Fig 1, the N NJ ER algorithm separates well the instrumental ET from the multijet background and the real ET of the Higgs signal CDF II Preliminary Unit Normalization Unit Normalization CDF II Preliminary 0.08 0.035 0.07 0.06 Multijet background 0.05 0.03 Multijet background 0.025 ZH → ν ν bb (mH = 120 GeV) ZH → ν ν bb (mH = 120 GeV) 0.02 0.04 0.015 0.03 0.01 0.02 0.005 0.01 0 0.04 20 40 60 80 0 100 120 140 160 180 200 Missing Transverse Energy (GeV) 20 40 60 80 100 120 140 160 180 200 NN Missing Transverse Energy (GeV) Figure 1: H1 and N NJER ET distributions for multijet background and ZH → ν ν¯b¯b events in the preselection region The dashed vertical line at 35 GeV represents the additional analysis cut made after ntupling The next iteration of this analysis will implement the N NJ ER algorithm by correcting the m(j1 , j2 )distributions as well and by retraining the multivariate discriminants with the N NJ ER corrected ET and m(j1 , j2 )variables Event selection We collect events using multiple trigger paths: MET35 TWO JETS (up to p4), MET35 CJET JET (up to p14), MET DIJET (p14-p38), and MET45 (p0-p38) We consider a logical combination of these paths (OR), which is parameterized using a NN (CDF10538) We use the qcd si GRLvHiggs list of good runs, which includes runs recovered from all data periods The increase in luminosity due to moving from GRLv45 em si to this list is of about 0.385 fb−1 , and represent a 4% gain We require events to have ET > 35 GeV, no identified leptons, and two or three jets (ETj1 > 25 GeV and ETj2 > 20 GeV) with |η| < In addition, one of the two leading jets must satisfy |η| < 9.0 to be within full tracking coverage We reject events having ∆R(j1 , j2 ) < 0.8 In addition, we require that at least one jet in the event be consistent with originating from a b-quark This requirement suppresses a lot of the background, while retaining a fair fraction of the signal We use two algorithms to identify jets originating from b-quarks: SecVtx [2] (tight operating point) and JetProb [3] (5% operating point) We define three exclusive tagging categories: SS (two SecVtx tags), SJ (one SecVtx tag and one JetProb tag), and 1S (only one SecVtx tag) Background modeling In this section, we briefly review the background modeling Additional details are provided in previous notes (CDF10507, CDF10583), as well as in [1] 4.1 The QCD multi-jet background The main background to this search is QCD multi-jet (MJ) production In these events, a mismeasurement of the jet energies leads to instrumental ET We model this background using a data-driven method Using events mis-measured QCD jets by requiring ∆φ(ET , j2 ) < 0.4 and 35 < ET < 70 (TRM region), we derive a tag rate (TR) for each tagging category The TR is the probability for a taggable event (an event with enough good quality tracks) to be in one of the tagging categories The TR is parameterized as a function of four variables: pT , /pT j2 Figure ?? shows the distribution of these variables pT jchgd /pT j1 , and HT , pT jchgd for events in the TRM region We observe an excellent agreement between the predictions of the TR method and the data Figures to show that this technique provides an excellent agreement for variables that are not part of the parameterization Mistags 60000 Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 50000 TRM 4500 SS SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 4000 Events/bin 70000 Events/bin Events/bin 1S ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 3500 TRM 3000 40000 Mistags 7000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 6000 TRM 5000 2500 30000 8000 4000 2000 3000 1500 20000 2000 1000 10000 1000 500 20 40 60 80 100 120 140 160 0 180 20 40 60 80 100 120 140 160 p Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 40000 TRM 40 60 80 100 120 140 160 180 p T Events/bin Events/bin Mistags 50000 20 p T ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 0 180 4000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 3500 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 3000 T Events/bin 0 TRM 2000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] TRM 3000 1500 20000 Mistags 5000 4000 2500 30000 6000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 2000 1000 10000 1000 500 0 100 200 300 400 500 600 700 0 800 100 200 300 400 500 600 700 HT ×10 0 800 100 200 300 400 500 600 700 800 HT HT Mistags 250 Multijet Higgs 125 GeV/c (x50) Data [CDF II Preliminary] TRM 200 3000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 2500 Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 300 Multijet Higgs 125 GeV/c (x5) Data [CDF II Preliminary] TRM 2000 7000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 6000 [CDF II Preliminary] TRM 5000 4000 150 1500 100 1000 50 500 3000 2000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 chgd ∑p 1000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 chgd ∑p /p T T ×10 j 0 j 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 chgd ∑p /p T T j /p T T Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 120 TRM 100 80 60 1800 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 1600 Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 140 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 1400 TRM 4500 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 4000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 3500 TRM 1200 3000 1000 2500 800 2000 600 1500 400 1000 40 20 0 200 0.2 0.4 0.6 0.8 1.2 1.4 chgd ∑p T 1.6 j 0 500 0.2 0.4 0.6 0.8 /p T 1.2 1.4 chgd ∑p T 1S SS 1.6 j 0 0.2 0.4 0.6 0.8 /p T 1.2 T SJ Figure 2: Variables used to parameteriza the TR efficiency shown in the TRM region for the three i /pT ji (i = 1, 2) are due to the binning of the tagging categories The fluctuations in pT jchgd matrix, and not bias the TR prediction 1.4 chgd ∑p 1.6 j /p T Figure 3: Weights applied to events in the pre-selection and signal regions for events contributing to the QCD MJ prediction These weights only affect the shape of the QCD MJ distributions When obtaining the prediction for QCD MJ in regions where the contribution from other processes (see next section) is not negligible, we must avoid double-counting events in the same region of phase-space For this purpose, we apply the TR to the simulated events used to model these other (electroweak) processes, and subtract that contribution from what is obtained by weighing the taggable data in that region by the TR The normalization of the QCD MJ prediction is checked using all available control regions 4.1.1 ETj reweighing factors for the QCD MJ model Because we model our QCD MJ background from mis-measured QCD di-jet events, we lack a proper description for events with low values of HT ) (actually ETj1 and ETj2 ) This type of events, however, is present in the regions where ∆φ(ET , j2 ) > 0.4 To account for this difference, we reweigh the events contributing to the QCD MJ prediction according to their ETj1 and ETj2 The factors are derived from a pure QCD sample (events with N NQCD < 0.11 ); their value is shown in figure Figure shows the effect of this procedure for several kinematic variables in the pre-selection 4.2 The electroweak processes A range of processes contribute to the ET +b-jets signature: V +jets, top pair, single top, and diboson production We collectively refer to them as electroweak processes since these involve the decay of a vector boson We model these using Monte Carlo (MC) simulations We use Alpgen to model V +jets, PowHeg for single top, and Pythia to model the remaining backgrounds, as well as the signal Parton showering is done using Pythia We correct for the difference between the luminosity profile used for the MC simulation and that of the data Figure shows the effect of the re-weithing The correction, the NVTX weight, is derived from events with two identified leptons and 75 < m(ℓ, ℓ) < 105 by scaling the overall contribution of the MC (i.e not process by process) to match the data when both are normalized to unit area The heavy flavor EWK contributions are obtained from MC events with heavy flavor jets (determined by look at the patrons within the jet cone) and are weighted by the trigger effi1N N QCD is a NN trained to separate the signal from the QCD MJ background (section 6) 40000 Mistags Multijet Higgs 125 GeV/c2 (x50) Data 35000 [CDF II Preliminary] 30000 PreSel 1200 SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 1000 Events/bin SS Events/bin Events/bin 1S ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f [CDF II Preliminary] PreSel 800 2400 2200 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 2000 Multijet Higgs 125 GeV/c2 (x5) Data 1800 [CDF II Preliminary] 1600 PreSel 1400 25000 1200 600 20000 1000 15000 800 400 600 10000 400 200 5000 200 0 50 100 150 200 250 300 0 350 j 50 100 150 200 250 300 ET1 ×10 0 350 j 50 100 150 200 250 300 ET1 350 j ET1 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 80 PreSel 2400 2200 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 2000 Events/bin 100 Events/bin Events/bin Multijet Higgs 125 GeV/c2 (x5) Data 1800 [CDF II Preliminary] 1600 PreSel 1400 60 5000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 4000 PreSel 3000 1200 1000 40 2000 800 600 20 1000 400 200 50 100 150 200 250 300 0 350 j 50 100 150 200 250 300 30000 -1 ET+b-jets 9.45 fb : Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags 25000 Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] PreSel 20000 15000 10000 5000 0 -1 800 ET+b-jets 9.45 fb : SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 700 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 600 200 300 400 500 600 700 800 50 100 150 200 250 300 PreSel ET2 1600 ET+b-jets 9.45 fb : SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 1400 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 1200 1000 400 800 300 600 200 400 0 350 j -1 500 100 100 0 350 j ET2 Events/bin Events/bin ET2 Events/bin 0 PreSel 200 100 200 300 400 HT 500 600 700 800 0 100 200 300 400 HT 1S SS Figure 4: Effect of the ETj re-weighing in the preselection region 500 600 700 800 HT SJ NvtxRaw Nvtx2012 NvtxOld 0.5 Nvtx_ExpBkg Nvtx_ExpBkg Entries 327803 Entries 327803 Mean 2.365 RMS 1.083 0.4 0.3 0.2 0.35 Mean 2.857 RMS 1.175 Nvtx_ExpBkg Entries 327803 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 Mean 2.883 RMS 1.175 0.1 0 10 12 14 16 18 20 0 10 12 14 16 18 20 10 12 14 16 18 20 Figure 5: Distribution of the number of vertices (NVTX ) in events with two identified leptons and 75 < m(ℓ, ℓ) < 105: with out re-weighing (left), with the EPS2011 re-weighing factor, and with the factor derived from the full CDF dataset ciency, the NVTX -weight, and the b-tagging efficiency The light flavor EWK mis-tag contribution is obtained from MC events without a heavy flavor parton inside the jet cone These are weighted by the trigger efficiency, the Nvtx-weight, and the factors obtained from the official mis-tag matrices 5.1 Control region plots TRM We validate our background model in multiple control regions (cf figure 6) The QCD region (∆φ(ET , j2 ) < 0.4, ET > 70 GeV) is a pure QCD region used to cross-check the QCD MJ model The EWK region (∆φ(ET , j2 ) < 0.4, ET > 35 GeV, one identified lepton) is used to validate the MC simulations The analysis region (pre-selection region) contains events with no jet aligned to the ET (we use ∆φ(ET , j3 ) > 0.4 and ∆φ(ET , j1 ) < 1.5 on top of the cut on the angle between ET and j2 ) In this region, we train a N N to separate the QCD MJ background from the Higgs signal (cf section 6) and cut on its output to reject the QCD MJ production We use these rejected events to extract (N NQCD < 0.1) and check (0.1 ≤ N NQCD ≤ 0.4) the normalization of the QCD MJ model The region in which we perform the signal extraction (likelihood fit) is defined by N NQCD > 0.45 We observe excellent shape agreement between the predictions and the data throughout our control regions Plots are shown in figures to 18 Tables to ET QCD 70GeV/c2 TRM Signal Region N NQCD > α QCD Scale Factor Check N NQCD < α EWK ≥ lepton (e/µ) 35GeV/c20.4 [rad] ∆φ(ET , J2 ) Figure 6: Control regions used to validate the components of the background model For this analysis, α = 0.45 1S ×10 SS SJ 200 Mistags Multijet Higgs 125 GeV/c2 (x50) Data 180 [CDF II Preliminary] 160 TRM ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 10000 Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 220 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 8000 TRM Mistags [CDF II Preliminary] 16000 120 12000 Multijet Higgs 125 GeV/c2 (x5) Data 18000 14000 TRM 10000 100 80 8000 4000 6000 60 40 4000 2000 2000 20 20 40 60 80 100 120 140 160 180 0 200 20 40 60 80 100 120 140 160 180 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 70000 Mistags 60000 Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 50000 TRM 0 20 40 60 80 100 120 140 160 180 ET Events/bin ET 200 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 4500 Mistags 4000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 3500 TRM 3000 40000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 8000 Mistags 7000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 6000 TRM 5000 2500 30000 200 ET Events/bin 0 Events/bin 20000 140 6000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 22000 4000 2000 3000 1500 20000 2000 1000 10000 1000 500 0 20 40 60 80 100 120 140 160 0 180 20 40 60 80 100 120 140 160 p 20 40 60 80 100 120 140 160 p T ×10 0 180 180 p T T 250 Mistags Multijet Higgs 125 GeV/c2 (x50) Data 200 [CDF II Preliminary] TRM ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 12000 Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 10000 TRM 8000 150 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 25000 Mistags Multijet Higgs 125 GeV/c2 (x5) Data 20000 [CDF II Preliminary] TRM 15000 6000 100 10000 4000 50 5000 2000 0 10 12 14 ET/ ×10 ∑E 0 16 10 12 14 ET/ T ∑E 0 16 10 12 14 ET/ T ∑E 16 T Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 120 TRM 100 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 10000 Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 140 Events/bin Events/bin 160 Multijet Higgs 125 GeV/c2 (x5) Data 8000 [CDF II Preliminary] TRM ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 18000 Mistags 16000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 14000 TRM 12000 6000 10000 80 8000 4000 60 6000 40 4000 2000 20 2000 0 0.5 1.5 2.5 3.5 0 0.5 1.5 2.5 3.5 HT/ ET ×10 0 0.5 1.5 2.5 3.5 HT/ ET HT/ ET Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 100 TRM ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 6000 Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 120 Multijet Higgs 125 GeV/c2 (x5) Data 5000 [CDF II Preliminary] TRM Mistags 60 3000 6000 40 2000 4000 20 1000 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.2 2.4 0 [CDF II Preliminary] TRM 8000 0 Multijet Higgs 125 GeV/c2 (x5) Data 10000 4000 80 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 12000 2000 0.2 0.4 0.6 0.8 1.2 ET/HT 1.4 1.6 1.8 2.2 2.4 0 0.2 0.4 0.6 0.8 1.2 ET/HT 1S SS Figure 7: Variables used as input to N NQCD in the TRM region (1) 1.4 1.6 1.8 2.2 2.4 ET/HT SJ 1S ×10 SS SJ Mistags 200 Multijet Higgs 125 GeV/c2 (x50) Data 180 [CDF II Preliminary] 160 TRM 12000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin 220 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin Multijet Higgs 125 GeV/c2 (x5) Data 10000 [CDF II Preliminary] TRM 8000 140 120 25000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 20000 [CDF II Preliminary] TRM 15000 6000 100 10000 80 4000 60 40 5000 2000 20 0 0.5 1.5 2.5 0 0.5 1.5 2.5 ∆φ(p ,ET) ×10 0 0.5 1.5 2.5 ∆φ(p ,ET) T ∆φ(p ,ET) T T Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 400 TRM 30000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 500 Multijet Higgs 125 GeV/c2 (x5) Data 25000 [CDF II Preliminary] TRM 20000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 50000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] TRM 40000 300 30000 15000 200 100 0 0.5 1.5 2.5 10000 20000 5000 10000 0 0.5 1.5 2.5 Min(∆φ(E ,j )) ×10 0 0.5 1.5 2.5 Min(∆φ(E ,j )) T i Min(∆φ(E ,j )) T i T i Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 300 TRM 250 200 18000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 16000 Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 350 Events/bin Events/bin 400 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 14000 TRM 40000 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 30000 TRM 12000 25000 10000 20000 8000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 35000 15000 150 6000 100 10000 4000 50 5000 2000 0 0.5 1.5 2.5 0 0.5 1.5 2.5 Min(∆φ(p ,j )) 0.5 1.5 2.5 Min(∆φ(p ,j )) T i ×10 0 3 Min(∆φ(p ,j )) T i T i Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 300 TRM 250 24000 22000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 20000 Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 350 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 18000 TRM 16000 14000 200 45000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 40000 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 35000 TRM 30000 25000 12000 150 100 10000 20000 8000 15000 6000 10000 4000 50 5000 2000 0 0.5 1.5 2.5 3.5 4.5 0 0.5 1.5 2.5 3.5 Max(∆ R(j ,j )) 4.5 0 0.5 1.5 2.5 3.5 Max(∆ R(j ,j )) i k ×10 4 4.5 Max(∆ R(j ,j )) i k i k Mistags Data Multijet Higgs 125 GeV/c2 (x50) [CDF II Preliminary] TRM 400 300 200 100 0 30000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Data Multijet Higgs 125 GeV/c2 (x5) [CDF II Preliminary] 25000 TRM 1.5 2.5 60000 Mistags Data Multijet Higgs 125 GeV/c2 (x5) [CDF II Preliminary] TRM 40000 15000 30000 10000 20000 0 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 50000 20000 10000 5000 0.5 Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 500 Events/bin Events/bin 600 0.5 1.5 Max(∆φ(ji,jk)) 2.5 0 0.5 1.5 Max(∆φ(ji,jk)) 1S SS Figure 8: Variables used as input to N NQCD in the TRM region (2) 10 2.5 Max(∆φ(ji,jk)) SJ 25000 Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 20000 TRM 2000 SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 1800 Events/bin SS Events/bin Events/bin 1S ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 1600 TRM 1400 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 2500 TRM 2000 1200 15000 3000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 1000 1500 800 10000 1000 600 400 5000 500 200 0 50 100 150 200 250 300 350 0 400 50 100 150 200 250 300 350 M(j ,j ) 50 100 150 200 250 300 350 M(j ,j ) ×10 0 400 400 M(j ,j ) 2 Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 300 TRM 250 25000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 350 Events/bin Events/bin 400 Multijet Higgs 125 GeV/c2 (x5) Data 20000 [CDF II Preliminary] TRM 45000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 40000 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 35000 TRM 30000 15000 25000 200 20000 10000 150 15000 100 10000 5000 50 5000 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 TrackMET NN ×10 0.6 0.8 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 TrackMET NN 0.6 0.8 TrackMET NN ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x50) Data 140 [CDF II Preliminary] 120 TRM 10000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin 160 Events/bin Events/bin 180 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 8000 TRM 18000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 16000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 14000 TRM 12000 6000 100 10000 80 8000 4000 60 6000 40 4000 2000 20 2000 -50 50 100 150 -100 200 -50 50 100 150 60000 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x50) Data 50000 [CDF II Preliminary] TRM 40000 30000 -100 -50 50 100 150 HT-ET Events/bin Events/bin HT-ET 200 4500 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 4000 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 3500 TRM 3000 200 HT-ET Events/bin -100 7000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 6000 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 5000 2500 4000 2000 3000 TRM 1500 20000 2000 1000 10000 1000 500 -100 -50 50 100 150 200 250 300 350 400 -100 -50 50 HT-ET 100 150 200 250 300 350 400 -100 -50 50 100 150 200 250 300 HT-ET Figure 26: Variables used as input to N NSIG but that not serve as input to the N NQCD in the TRM region 30 350 400 HT-ET 4000 Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 3500 QCD 3000 200 180 SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin SS ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 1S 4500 Multijet Higgs 125 GeV/c2 (x5) Data 160 [CDF II Preliminary] 140 QCD 100 2000 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 500 QCD 400 120 2500 600 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 300 80 1500 60 1000 40 200 100 500 20 50 100 150 200 250 300 350 0 400 50 100 150 200 250 300 350 M(j ,j ) Mistags Multijet Higgs 125 GeV/c2 (x50) Data 10000 [CDF II Preliminary] QCD 100 150 200 250 300 350 800 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 700 [CDF II Preliminary] 600 QCD 400 M(j ,j ) Events/bin Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 50 M(j ,j ) 12000 0 400 Events/bin 0 8000 1800 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 1600 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 1400 QCD 1200 500 1000 6000 400 800 300 4000 600 200 2000 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -1 200 -0.8 -0.6 -0.4 -0.2 0.2 0.4 6000 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x50) Data 5000 [CDF II Preliminary] QCD 4000 0.8 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 TrackMET NN Events/bin Events/bin TrackMET NN 0.6 350 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 300 QCD 250 0.8 900 800 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 700 [CDF II Preliminary] 600 QCD 500 200 3000 0.6 TrackMET NN Events/bin -1 400 100 400 150 300 2000 100 1000 200 50 -50 50 100 150 100 -100 200 -50 50 100 150 1400 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 1200 QCD 1000 -100 -50 50 100 150 HT-ET Events/bin Events/bin HT-ET 200 100 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 80 QCD 200 HT-ET Events/bin -100 220 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 200 Mistags Multijet Higgs 125 GeV/c2 (x5) Data 180 [CDF II Preliminary] 160 QCD 140 60 120 800 100 600 40 80 60 400 20 40 200 -100 20 -50 50 100 150 200 250 300 350 400 -100 -50 50 HT-ET 100 150 200 250 300 350 400 -100 -50 50 100 150 200 250 300 HT-ET Figure 27: Variables used as input to N NSIG but that not serve as input to the N NQCD in the QCD region 31 350 400 HT-ET Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 400 EWK 300 50 SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 40 EWK 50 EWK 20 20 10 10 200 250 300 350 0 400 50 100 150 200 250 300 350 M(j ,j ) ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags 3500 Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 3000 EWK 50 100 150 200 250 300 350 2500 350 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 300 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 250 EWK 400 M(j ,j ) Events/bin 4000 0 400 M(j ,j ) 2 Events/bin 150 [CDF II Preliminary] 40 100 100 Multijet Higgs 125 GeV/c2 (x5) Data 30 30 50 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 200 0 Events/bin Events/bin SS ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 1S 500 400 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 350 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 300 EWK 250 200 2000 200 150 1500 150 100 1000 100 50 500 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -1 50 -0.8 -0.6 -0.4 -0.2 0.2 0.4 1200 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags 1000 Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] EWK 800 0.8 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 TrackMET NN Events/bin Events/bin TrackMET NN 0.6 120 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 100 [CDF II Preliminary] EWK 0.6 0.8 TrackMET NN Events/bin -1 80 140 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 120 [CDF II Preliminary] EWK 100 80 600 60 60 400 40 200 20 40 -50 50 100 150 20 -100 200 -50 50 100 150 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 1000 Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 800 EWK -100 -50 50 100 150 HT-ET Events/bin Events/bin HT-ET 200 80 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 70 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 60 EWK 200 HT-ET Events/bin -100 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 100 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 80 EWK 50 600 60 40 30 400 40 20 200 20 10 -100 -50 50 100 150 200 250 300 350 400 -100 -50 50 HT-ET 100 150 200 250 300 350 400 -100 -50 50 100 150 200 250 300 HT-ET Figure 28: Variables used as input to N NSIG but that not serve as input to the N NQCD in the EWK region 32 350 400 HT-ET 12000 Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 10000 PreSel 400 SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin SS Events/bin Events/bin 1S ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Multijet Higgs 125 GeV/c2 (x5) Data 350 [CDF II Preliminary] 300 PreSel 800 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 700 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 600 8000 250 500 6000 200 400 150 300 100 200 PreSel 4000 2000 100 50 0 50 100 150 200 250 300 350 0 400 50 100 150 200 250 300 350 M(j ,j ) 50 100 150 200 250 300 350 M(j ,j ) ×10 0 400 400 M(j ,j ) 2 Mistags Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] 100 PreSel 4000 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 3500 Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Events/bin Events/bin 120 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 3000 PreSel 8000 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 7000 [CDF II Preliminary] 6000 PreSel 2500 80 5000 2000 4000 60 1500 3000 40 1000 20 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 -1 1000 -0.8 -0.6 -0.4 -0.2 0.2 0.4 35000 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x50) Data 30000 [CDF II Preliminary] PreSel 25000 0.8 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 TrackMET NN Events/bin Events/bin TrackMET NN 0.6 1200 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 1000 [CDF II Preliminary] PreSel 0.6 0.8 TrackMET NN Events/bin -1 2000 500 800 2500 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 2000 [CDF II Preliminary] PreSel 1500 20000 600 1000 15000 400 10000 500 200 5000 -50 50 100 150 -100 200 -50 50 100 150 30000 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags 25000 Multijet Higgs 125 GeV/c2 (x50) Data [CDF II Preliminary] PreSel 20000 15000 10000 -100 200 -50 50 100 150 HT-ET Events/bin Events/bin HT-ET 800 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 700 [CDF II Preliminary] 600 PreSel 200 HT-ET Events/bin -100 1600 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags [CDF II Preliminary] 1200 500 1000 400 800 300 600 200 400 Multijet Higgs 125 GeV/c2 (x5) Data 1400 PreSel 5000 200 100 -100 -50 50 100 150 200 250 300 350 400 -100 -50 50 HT-ET 100 150 200 250 300 350 400 -100 -50 50 100 150 200 250 300 HT-ET Figure 29: Variables used as input to N NSIG but that not serve as input to the N NQCD in the PreSel region 33 350 400 HT-ET Mistags Multijet Higgs 125 GeV/c2 (x50) Data 105 [CDF II Preliminary] TRM 104 105 SS SJ ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Events/bin 106 Events/bin Events/bin 1S ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 10 TRM 105 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 104 TRM 103 103 102 102 10 10 103 102 10 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10-10 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f 105 Mistags Multijet Higgs 125 GeV/c2 (x50) Data 104 [CDF II Preliminary] QCD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 NNSIG Events/bin Events/bin NNSIG 10-10 103 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 104 Mistags Multijet Higgs 125 GeV/c2 (x5) Data 103 [CDF II Preliminary] QCD 0.9 NNSIG Events/bin 10-10 102 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 104 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 103 QCD 102 102 10 10 10 1 -1 -1 -1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1600 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c (x50) Data 1400 [CDF II Preliminary] 1200 EWK 100 ET+b-jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c (x5) Data 80 [CDF II Preliminary] EWK 60 1000 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 NNSIG Events/bin Events/bin NNSIG 0.9 NNSIG Events/bin 10 140 ET+b-jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 120 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 100 EWK 80 800 60 40 600 40 400 20 20 200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 NNSIG 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 NNSIG Figure 30: Output of the N NSIG trained for mH = 125 GeV/c2 in the control regions: (a-c) TRM, (d-f) QCD, and (g-i) EWK Systematic uncertainties The estimation of the systematic uncertainties is the same as that of the 7.8 fb−1 analysis except for the JES uncertainty For the latter, we consider four varied shapes: two for the quark JES (±1σ from the nominal from CDF), and two for the gluon JES (−3σ and −1σ from to the nominal CDF case) The central JES value for gluon jets is taken to be −2σ from the nominal CDF case Figure 31 and 32 show the effect of the JES on the N NSIG output trained for mH = 125 GeV/c2 Plots for the systematic uncertainty on the trigger are given in figures 33 and 34 Figure 35 shows the effect of the uncertainty on the TR on the QCD MJ background, as well as that of the uncertainty in the mis-tag rates on the EWK LF mis-tags contribution Because of the poor statistics in the double tag regions, and the good agreement in 1S, only the rate effects – much more important – are included in the result 34 0.9 NNSIG 0.8 1.6 CENT JESQUP JESQDO JESGUP JESGDO 0.6 CENT 1.4 0.7 1.2 0.6 0.5 0.8 0.4 0.6 0.3 0.4 0.2 0.2 0.1 JESQUP JESQDO JESGUP JESGDO CENT JESQUP JESQDO JESGUP JESGDO 0.5 0.4 0.3 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_LVBB125_1S_JES 1.6 CENT JESQUP JESQDO JESGUP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_LVBB125_SS_JES JESGDO 0.1 CENT JESQUP JESQDO JESGUP 0.7 JESGDO 1.4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_LVBB125_SJ_JES CENT JESQUP JESQDO JESGUP JESGDO 0.6 0.8 1.2 0.5 0.6 0.4 0.8 0.3 0.4 0.6 0.2 0.4 0.2 0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_VVBB125_1S_JES 12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2.4 CENT JESQUP JESQDO JESGUP 2.2 JESGDO 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_VVBB125_SJ_JES CENT JESQUP JESQDO JESGUP JESGDO 1.8 CENT JESQUP JESQDO JESGUP JESGDO 1.6 1.8 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_VVBB125_SS_JES 1.6 1.4 1.4 1.2 1.2 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_WZ_1S_JES 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_WZ_SS_JES 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_WZ_SJ_JES 2.2 CENT JESQUP JESQDO JESGUP JESGDO 2.5 CENT JESQUP JESQDO JESGUP JESGDO CENT JESQUP JESQDO JESGUP JESGDO 1.8 1.6 1.4 1.5 1.2 0.8 0.6 0.4 0.5 0 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ZZ_1S_JES 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ZZ_SS_JES 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Figure 31: Effect of the JES systematic uncertainty on the Higgs signal, W Z, and ZZ 35 TMVA_KaSum2011_NNSIG_125_MLP_XML_ZZ_SJ_JES 3000 140 CENT JESQUP JESQDO JESGUP JESGDO 240 CENT JESQUP JESQDO JESGUP 220 JESGDO 120 2500 JESQUP JESQDO JESGUP JESGDO 180 100 2000 CENT 200 160 140 80 1500 120 60 100 1000 80 40 500 60 40 20 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_ExpBkg_1S_JES 400 350 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 18 CENT JESQUP JESQDO JESGUP JESGDO 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_ExpBkg_SS_JES 16 300 14 250 12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ExpBkg_SJ_JES 22 CENT JESQUP JESQDO JESGUP JESGDO 20 CENT JESQUP JESQDO JESGUP JESGDO 18 16 200 14 10 12 10 150 100 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Whf_1S_JES 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Whf_SS_JES TMVA_KaSum2011_NNSIG_125_MLP_XML_Whf_SJ_JES 10 CENT JESQUP JESQDO JESGUP 10 JESGDO CENT JESQUP JESQDO JESGUP JESGDO CENT 60 40 4 20 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Zhf_1S_JES JESQUP JESQDO JESGUP JESGDO 80 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Zhf_SS_JES 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_Zhf_SJ_JES 30 140 CENT JESQUP JESQDO JESGUP JESGDO 30 CENT JESQUP JESQDO JESGUP JESGDO CENT JESQUP JESQDO JESGUP JESGDO 25 120 25 100 20 20 80 15 15 60 40 10 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ttbar_1S_JES 0 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ttbar_SS_JES 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ttbar_SJ_JES Figure 32: Effect of the JES systematic uncertainty on the major backgrounds, W Z, and ZZ 36 0.8 1.6 1.4 CENTTRIGUP 0.7 0.6 0.5 0.8 0.4 0.6 0.3 0.4 0.2 0.2 0.1 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_LVBB125_1S_TRIG 1.6 CENTTRIGUP 0.5 1.2 0 0.6 CENTTRIGUP 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_LVBB125_SS_TRIG CENTTRIGUP 0.1 0 0.7 CENTTRIGUP 1.4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_LVBB125_SJ_TRIG CENTTRIGUP 0.6 0.8 1.2 0.5 0.6 0.4 0.8 0.3 0.4 0.6 0.2 0.4 0.2 0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_VVBB125_1S_TRIG 12 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_VVBB125_SS_TRIG 2.4 2.2 CENTTRIGUP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_VVBB125_SJ_TRIG CENTTRIGUP 1.8 CENTTRIGUP 1.6 1.8 0 1.6 1.4 1.4 1.2 1.2 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_WZ_1S_TRIG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_WZ_SS_TRIG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_WZ_SJ_TRIG 2.2 CENTTRIGUP 2.5 CENTTRIGUP CENTTRIGUP 1.8 1.6 1.4 1.5 1.2 0.8 0.6 0.4 0.5 0 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ZZ_1S_TRIG 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ZZ_SS_TRIG 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Figure 33: Effect of the TRIG systematic uncertainty on the Higgs signal, W Z, and ZZ 37 TMVA_KaSum2011_NNSIG_125_MLP_XML_ZZ_SJ_TRIG 3000 140 CENTTRIGUP 2500 240 CENTTRIGUP 120 200 180 100 2000 CENTTRIGUP 220 160 140 80 1500 120 60 100 1000 80 40 500 60 40 20 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_ExpBkg_1S_TRIG 400 350 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 18 CENTTRIGUP 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_ExpBkg_SS_TRIG 16 300 14 250 12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ExpBkg_SJ_TRIG 22 CENTTRIGUP 20 CENTTRIGUP 18 16 200 14 10 12 10 150 100 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Whf_1S_TRIG 100 CENTTRIGUP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Whf_SS_TRIG 10 10 CENTTRIGUP 60 40 4 20 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Zhf_1S_TRIG CENTTRIGUP 80 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_Whf_SJ_TRIG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_Zhf_SS_TRIG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_Zhf_SJ_TRIG 30 140 CENTTRIGUP 30 CENTTRIGUP 25 120 CENTTRIGUP 25 100 20 20 80 15 15 60 40 10 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ttbar_1S_TRIG 0 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ttbar_SS_TRIG 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_ttbar_SJ_TRIG Figure 34: Effect of the TRIG systematic uncertainty on the major backgrounds, W Z, and ZZ 38 70 2000 160 CENT TRFDO TRFUP 60 1500 CENT TRFDO TRFUP CENT TRFDO TRFUP 140 120 50 100 40 1000 80 30 60 20 500 40 10 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_QCDAM_1S_TRF 300 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 TMVA_KaSum2011_NNSIG_125_MLP_XML_QCDAM_SS_TRF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_QCDAM_SJ_TRF 2.2 CENT MISDO MISUP 250 CENT MISDO MISUP CENT MISDO MISUP 1.8 1.6 200 1.4 1.2 150 0.8 100 0.6 0.4 50 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_MIS_1S_MIS 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_MIS_SS_MIS 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 TMVA_KaSum2011_NNSIG_125_MLP_XML_MIS_SJ_MIS Figure 35: Effect of the TRF and MIS systematic uncertainties on the QCD and mis-tag predictions Results Observing no significant excess in the data, we set forth to put 95% confidence level (CL) upper limits on the VH production cross-section times branching fraction to b¯b We scan the output of N NSIG for each mass point using a Bayesian likelihood method Figure 36 and table show the outcome of this fit For mH = 125 GeV/c2 we set an observed (expiated) limit of 6.7 (3.6) times the SM prediction 10 Reinterpretation as a σ(W Z + ZZ) measurement Using the predictions and the data from the signal region of the Higgs search, we set out to estimate the W Z + ZZ production cross-section times branching fraction to b¯b For this purpose, we use the di-jet invariant mass distribution (figure 37) as well as a dedicated NN trained to separate the W Z + ZZ signal from the background (figure 38) This network uses the same variables as that of the Higgs search, except that there is no separate network for the two- and three-jet cases In addition, we introduce a JER-corrected di-jet mass mJER (j1 , j2 ) (figure 39) computed from the jets after the JER corrections from section For each set of plots, we compare the pre-fit predictions, those from a fit in the ET +b-jets signature only, DB and those from the combined CDF fit The N NSIG performs better than the H1-corrected m(j1 , j2 ), but not much more than the N NJ ER -corrected m(j1 , j2 ) It is thus expected that the next iteration of the Higgs analysis would also benefit from this improvement 39 95% C.L limit / SM ET+b-jets 9.45 fb-1 [CDF II Preliminary] 68% Confidence interval 95% Confidence interval Expected 95% C.L limit Observed 95% C.L limit 10 90 100 110 120 130 140 150 Higgs Mass (GeV/c2) Figure 36: Expected and observed 95% CL upper limits on the VH production cross-section times branching fraction, as a ratio to the SM prediction 40 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW WZ+ZZ Data 1600 [CDF II Preliminary] 1400 SR 90 80 1200 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Events/bin 1800 Events/bin Events/bin 2000 Multijet Higgs 125 GeV/c2 (x5) Data 70 [CDF II Preliminary] 60 SR 50 140 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 120 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] SR 100 80 1000 40 60 800 30 600 40 20 400 50 100 150 200 250 300 350 0 400 50 100 150 200 250 300 M(j ,j ) ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW WZ+ZZ Data 1600 [CDF II Preliminary] 1400 SR 1200 METbb fit 90 80 100 150 200 250 300 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Multijet 70 [CDF II Preliminary] 60 SR 400 M(j ,j ) Higgs 125 GeV/c2 (x5) Data 350 50 140 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 120 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] SR 100 80 1000 40 60 800 30 600 40 20 400 50 100 150 200 250 300 350 0 400 50 100 150 200 250 300 M(j ,j ) ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW WZ+ZZ Data 1600 [CDF II Preliminary] 1400 SR 1200 CDF fit 50 100 150 200 250 300 90 80 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags Higgs 125 GeV/c (x5) Data [CDF II Preliminary] 60 SR 400 Multijet 70 350 M(j ,j ) Events/bin 1800 0 400 M(j ,j ) 2000 350 Events/bin 0 20 10 200 Events/bin [fit to data] 50 Events/bin Events/bin [fit to data] 1800 0 400 M(j ,j ) 2000 350 Events/bin 0 20 10 200 50 140 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 120 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] SR 100 80 1000 40 60 800 30 600 40 20 400 200 0 20 10 50 100 150 200 250 300 350 0 400 50 100 150 200 250 300 M(j ,j ) 0 400 50 150 200 250 300 -1 -1 CDF II ET +b-jets 9.45 fb Preliminary 95% C.L 0.03 DB NNSIG 95% C.L 0.03 68% C.L 68% C.L 0.025 0.025 σ(WZ+ZZ)/SM = 0.02 0.7-0.1 -0.2 σ(WZ+ZZ)/SM = 0.7-0.1 -0.2 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0.5 1.5 2.5 3.5 σ(WZ+ZZ)/SM 0 0.5 1.5 2.5 3.5 σ(WZ+ZZ)/SM Figure 37: m(j1 , j2 ) discriminant plots for the W Z +ZZ signal extraction with different fit settings, along with the values of σ(W Z + ZZ), σ(W Z), and σ(ZZ) extracted in the ET +b-jets signature 41 400 0.035 DB NNSIG 350 M(j ,j ) CDF II ET +b-jets 9.45 fb Preliminary 0 100 M(j ,j ) 0.035 350 WW WZ+ZZ Data [CDF II Preliminary] 2000 SR ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 100 Mistags Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f Events/bin Events/bin 2500 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 80 SR 200 180 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 160 [CDF II Preliminary] 140 SR 120 1500 60 100 80 1000 40 500 20 60 40 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2500 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW WZ+ZZ Data [CDF II Preliminary] 2000 0 SR 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 100 Mistags Multijet Higgs 125 GeV/c (x5) Data [CDF II Preliminary] 80 0.9 NNDB SIG SR 200 180 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 160 [CDF II Preliminary] 140 SR 120 METbb fit 1500 0.1 NNDB SIG Events/bin Events/bin [fit to data] NNDB SIG Events/bin 0 60 100 80 1000 40 500 20 60 40 20 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW 0 0.9 NNDB SIG WZ+ZZ Data [CDF II Preliminary] 2000 SR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f 100 Mistags 0 0.9 NNDB SIG Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 80 SR 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 200 180 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags Multijet Higgs 125 GeV/c2 (x5) Data 160 [CDF II Preliminary] 140 SR 120 CDF fit 1500 0.1 NNDB SIG Events/bin 2500 0.1 Events/bin Events/bin [fit to data] 0 60 100 80 1000 40 500 20 60 40 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.9 NNDB SIG 0.1 0.2 0.3 0.4 0.5 0.6 -1 0.045 0.7 0.8 0 0.9 NNDB SIG 0.045 0.4 0.5 0.6 0.7 CDF II ET +b-jets 9.45 fb Preliminary MJJ 0.04 95% C.L 95% C.L 0.035 68% C.L 0.03 68% C.L 0.03 σ(WZ+ZZ)/SM = 0.025 0.02 0.4+0.1 -0.0 σ(WZ+ZZ)/SM = 0.4+0.1 -0.0 0.025 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 0.3 σ(WZ+ZZ)/SM 0 σ(WZ+ZZ)/SM DB Figure 38: N NSIG discriminant plots for the W Z + ZZ signal extraction with different fit settings, along with the values of σ(W Z + ZZ), σ(W Z), and σ(ZZ) extracted in the ET +b-jets signature 42 0.8 0.9 NNDB SIG MJJ 0.035 0.2 -1 CDF II ET +b-jets 9.45 fb Preliminary 0.04 0.1 WW 1600 WZ+ZZ Data [CDF II Preliminary] 1400 SR 1200 80 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 70 Events/bin ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f Events/bin Events/bin 1800 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 60 SR 50 1000 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 120 Mistags Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 100 SR 80 40 60 800 30 600 40 20 400 100 150 200 250 300 350 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW 1600 0 400 Events/bin WZ+ZZ Data [CDF II Preliminary] 1400 SR 1200 100 150 200 250 300 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 70 350 0 400 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 60 SR 50 METbb fit 1000 50 100 150 200 250 300 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 120 Mistags 350 400 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 100 SR 80 40 60 800 30 600 40 20 400 1800 50 100 150 200 250 300 350 ET+b-jets 9.45 fb-1: Excl SecVTX (1S) Top Multijet W/Z + h.f WW 1600 0 400 Events/bin 0 20 10 200 Events/bin [fit to data] 80 50 WZ+ZZ Data [CDF II Preliminary] 1400 SR 1200 80 50 100 150 200 250 300 ET+b-jets 9.07 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f Mistags 70 350 0 400 Events/bin Events/bin [fit to data] 1800 50 Events/bin 200 0 20 10 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 60 SR 50 CDF fit 1000 50 100 150 200 250 300 ET+b-jets 9.07 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f 120 Mistags 350 400 Multijet Higgs 125 GeV/c2 (x5) Data [CDF II Preliminary] 100 SR 80 40 60 800 30 600 40 20 400 0 20 10 200 50 100 150 200 250 300 350 0 400 50 100 150 200 250 -1 350 0 400 50 150 200 250 300 CDF II ET +b-jets 9.45 fb Preliminary JER MJJ JER MJJ 0.03 95% C.L 95% C.L 68% C.L 0.025 68% C.L 0.025 0.02 0.02 σ(WZ+ZZ)/SM = 0.7-0.2 -0.1 0.015 0.01 0.005 0.005 0.5 1.5 2.5 σ(WZ+ZZ)/SM = 0.7-0.2 -0.1 0.015 0.01 0 100 -1 CDF II ET +b-jets 9.45 fb Preliminary 0.03 300 3.5 σ(WZ+ZZ)/SM 0 0.5 1.5 2.5 3.5 σ(WZ+ZZ)/SM Figure 39: mJER (j1 , j2 ) discriminant plots for the W Z + ZZ signal extraction with different fit settings, along with the values of σ(W Z + ZZ), σ(W Z), and σ(ZZ) extracted in the ET +b-jets signature 43 350 400 Table 7: Expected and observed 95% CL upper limits on the VH production cross-section times branching fraction, as a ratio to the SM prediction mH 90 95 100 105 110 115 120 125 130 135 140 145 150 ET +b-jets Observed 1.84 1.73 2.18 2.15 2.67 2.70 3.90 6.75 6.71 8.93 12.72 19.17 27.19 9.45 fb−1 [CDF II Preliminary] −2σ −1σ Median +1σ +2σ 0.92 1.33 1.85 2.6 3.54 1.09 1.47 2.15 2.97 4.05 1.22 1.69 2.35 3.28 4.59 1.3 1.84 2.56 3.53 4.78 1.44 1.91 2.72 3.92 4.98 1.44 1.96 2.75 3.94 5.39 1.68 2.25 3.11 4.32 5.95 1.93 2.61 3.67 5.16 7.33 2.41 3.22 4.54 6.36 8.47 3.12 4.23 8.37 11.4 4.28 5.67 7.96 11.41 15.33 6.3 8.49 11.89 16.57 22.82 9.51 13.17 18.63 26.2 35.64 Asimov 1.88 2.20 2.41 2.56 2.72 2.80 3.21 3.67 4.54 6.01 7.99 11.67 18.29 References [1] K Potamianos, FERMILAB-THESIS-2011-34 [2] D Acosta et al (CDF Collaboration), Phys Rev D 71, 052003 (2005) [3] A Abulencia et al (CDF Collaboration), Phys Rev D 74, 072006 (2006) 44 ... Preliminary] SR 200 0 16 10 12 14 ET/ T Events/bin 20 p Events/bin 60 ET 1000 Events/bin 40 50 1400 0 20 ET Events/bin Events/bin ET Events/bin 0 ET+ b- jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson... ET+ b- jets 9.45 fb-1: SecVTX + SecVTX (SS) Top Diboson W/Z + h.f ET+ b- jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 2000 Events/bin 90000 Events/bin Events/bin 1S ET+ b- jets... h.f ET+ b- jets 9.45 fb-1: SecVTX + JetProb (SJ) Top Diboson W/Z + h.f Mistags 4000 Events/bin 70000 Events/bin Events/bin 1S ET+ b- jets 9.45 fb-1: Excl SecVTX (1S) Top Diboson W/Z + h.f Multijet