1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân

99 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH ĐỒ ÁN TỐT NGHIỆP NGÀNH CÔNG NGHỆ THỰC PHẨM ẢNH HUỞNG CỦA THỜI GIAN OXI HĨA LÊN CẤU TRÚC VÀ TÍNH CHẤT CƠNG NGHỆ CỦA TINH BỘT SẮN BIẾN TÍNH BẰNG KỸ THUẬT ÐIỆN PHÂN GVHD: TRỊNH KHÁNH SƠN SVTH: HOÀNG NGỌC TÂN MSSV: 14116138 SKL005570 Tp Hồ Chí Minh, tháng 01/2019 TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH KHOA CƠNG NGHỆ HĨA HỌC VÀ THỰC PHẨM BỘ MƠN CƠNG NGHỆ THỰC PHẨM KHĨA LUẬN TỐT NGHIỆP MÃ SỐ: 2019-14116138 ẢNH HƯỞNG CỦA THỜI GIAN OXI HÓA LÊN CẤU TRÚC VÀ TÍNH CHẤT CƠNG NGHỆ CỦA TINH BỘT SẮN BIẾN TÍNH BẰNG KỸ THUẬT ĐIỆN PHÂN GVHD: TS TRỊNH KHÁNH SƠN SVTH: HOÀNG NGỌC TÂN MSSV: 14116138 THÀNH PHỐ HỒ CHÍ MINH - 01/2019 i LỜI CẢM ƠN Để hồn thành khóa luận tốt nghiệp này, tơi xin gửi lời cảm ơn đến gia đình chu cấp, động viên nguồn động lực để học tập rèn luyện trường hồn thành khóa luận Xin chân thành cảm ơn thầy cô Bộ môn Công nghệ Thực phẩm, Khoa Cơng nghệ Hóa học Thực Phẩm, Trường Đại Học Sư Phạm Kỹ Thuật thành phố Hồ Chí Minh truyền dạy kiến thức tạo điều kiện thiết bị, sở vật chất giúp tơi hồn thành luận văn Xin chân thành cảm ơn thầy TS Trịnh Khánh Sơn tận tình giúp đỡ, hướng dẫn, truyền dạy kiến thức, kinh nghiệm giúp hồn thành khóa luận tốt nghiệp ii iii iv v vi vii viii 22 Gernat, C., Radosta, S., Damaschun, G., Schierbaum, F J S S (1990) Supramolecular structure of legume starches revealed by X‐ray scattering 42(5), 175-178 23 Gómez-López, V M., Ragaert, P., Ryckeboer, J., Jeyachchandran, V., Debevere, J., Devlieghere, F (2007) Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere International Journal of Food Microbiology, 117(1), 91-98 doi:https://doi.org/10.1016/j.ijfoodmicro.2007.02.016 24 Greenwood, C T (1964) Viscosity-molecular weight relations Methods in carbohydrate chemistry 4, 179-188 25 Guentzel, J L., Liang Lam, K., Callan, M A., Emmons, S A., Dunham, V L (2008) Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water Food Microbiology, 25(1), 36-41 doi:https://doi.org/10.1016/j.fm.2007.08.003 26 27 Gunaratne, A., Corke, H (2004) STARCH| Analysis of Quality Hanes, C S., Cattle, M J P R S L B (1938) Starch-iodine coloration as an index of differential degradation by the amylases 125(840), 387-414 28 Harding, S (1997) The intrinsic viscosity of biological macromolecules Progress in measurement, interpretation and application to structure in dilute solution Progress in biophysics molecular biology 68(2), 207-262 29 Hizukuri, S., Kaneko, T., Takeda, Y J B e B A.-G S (1983) Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules 760(1), 188-191 30 Hizukuri, S J C R (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance 147, 342-347 31 Hoover, R J C p (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review 45(3), 253-267 32 Hricova, D., Stephan, R., Zweifel, C (2008) Electrolyzed Water and Its Application in the Food Industry Journal of food protection, 71(9), 1934-1947 doi:10.4315/0362-028x-71.9.1934 51 33 Hsu, G.-S W., Hsia, C.-W., Hsu, S.-Y (2015) Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater Journal of Food and Drug Analysis, 23(4), 729-734 doi:https://doi.org/10.1016/j.jfda.2015.06.007 34 Huang, J., Schols, H A., van Soest, J J., Jin, Z., Sulmann, E., Voragen, A G J F C (2007) Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches 101(4), 1338-1345 35 Huber, K C., BeMiller, J N (2010) Modified starch: Chemistry and properties En: Starches: characterization, properties and applications FL: CRC Press, Andrea C B (Ed) Boca Raton, 155-157 36 Jacobson, M R., Obanni, M., Bemiller, J N J C C (1997) Retrogradation of starches from different botanical sources 74(5), 511-518 37 Jane, J.-L., Robyt, J F J C r (1984) Structure studies of amylose-V complexes and retro-graded amylose by action of alpha amylases, and a new method for preparing amylodextrins 132(1), 105-118 38 Jayakody, L., Hoover, R., Liu, Q., Donner, E J C P (2007) Studies on tuber starches II Molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka 69(1), 148-163 39 Jobling, S J C o i p b (2004) Improving starch for food and industrial applications 7(2), 210-218 40 Kizil, R., Irudayaraj, J (2006) Discrimination of Irradiated Starch Gels Using FT-Raman Spectroscopy and Chemometrics Journal of Agricultural and Food Chemistry, 54(1), 13-18 doi:10.1021/jf051491f 41 Kizil, R., Irudayaraj, J., Seetharaman, K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy Journal of agricultural food chemistry, 50(14), 3912-3918 42 Kuakpetoon, D., Wang, Y.-J (2006) Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content Carbohydrate Research, 341(11), 1896-1915 doi:https://doi.org/10.1016/j.carres.2006.04.013 43 Kuakpetoon, D., Wang, Y J J S S (2001) Characterization of different starches oxidized by hypochlorite 53(5), 211-218 44 Lapasin, R (2012) Rheology of industrial polysaccharides: theory and applications: Springer Science Business Media 52 45 Leach, H W (1959) Structure of starch granules I Swelling and solubility patterns of various starches Cereal Chem., 36, 534-544 46 Len, S.-V., Hung, Y.-C., Chung, D., Anderson, J L., Erickson, M C., Morita, K (2002) Effects of Storage Conditions and pH on Chlorine Loss in Electrolyzed Oxidizing (EO) Water Journal of Agricultural and Food Chemistry, 50(1), 209-212 doi:10.1021/jf010822v 47 Len, S V., Hung, Y C., Erickson, M., Kim, C (2000) Ultraviolet Spectrophotometric Characterization and Bactericidal Properties of Electrolyzed Oxidizing Water as Influenced by Amperage and pH Journal of food protection, 63(11), 1534-1537 doi:10.4315/0362-028x-63.11.1534 48 Lindeboom, N., Chang, P R., Tyler, R T (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review Starch‐Stärke, 56(3‐4), 89-99 49 Liu, Q (2005) Understanding starches and their role in food In Food carbohydrates: Chemistry, physical properties and applications (pp 309-355): CRC Press Taylor Francis Group, New York 50 Liu, S., Cai, P., Li, X., Chen, L., Li, L., Li, B (2016) Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites Carbohydrate Polymers, 154, 186-193 doi:https://doi.org/10.1016/j.carbpol.2016.08.006 51 Lopez-Rubio, A., Flanagan, B M., Shrestha, A K., Gidley, M J., Gilbert, E P J B (2008) Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches 9(7), 1951-1958 52 Miles, M J., Morris, V J., Orford, P D., Ring, S G J C r (1985) The roles of amylose and amylopectin in the gelation and retrogradation of starch Carbohydrate Research, 135(2), 271-281 53 Nara, S., Komiya, T (1983) Studies on the Relationship Between Water- satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch 35(12), 407-410 doi:doi:10.1002/star.19830351202 54 Ohwada, N., Ishibashi, K.-i., Hironaka, K., Yamamoto, K J J o A G (2003) Physicochemical properties of mungbean starch 50(4), 481-485 53 55 Oostergetel, G T., van Bruggen, E F J S S (1989) On the origin of a low angle spacing in starch 41(9), 331-335 56 Parovuori, P., Hamunen, A., Forssell, P., Autio, K., Poutanen, K (1995) Oxidation of Potato Starch by Hydrogen Peroxide Starch‐Stärke, 47(1), 19-23 doi:doi:10.1002/star.19950470106 57 Pérez, S., Bertoft, E J S S (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review 62(8), 389-420 58 Rocha, T S., Demiate, I M., Franco, C M L (2008) Structural and physicochemical characteristics of Peruvian carrot (Arracacia xanthorrhiza) starch Food Science and Technology Research, 28(3), 620-628 59 Saibene, D., Seetharaman, K J S S (2008) Use of iodine as a tool to understand wheat starch pasting properties 60(1), 1-7 60 Sajilata, M G., Singhal, R S., Kulkarni, P R J C r i f s., safety, f (2006) Resistant starch–a review 5(1), 1-17 61 Sánchez‐Rivera, M M., Méndez‐Montealvo, G., Núñez‐Santiago, C., de la Rosa‐Millan, J., Wang, Y J., Bello‐Pérez, L A (2009) Physicochemical Properties of Banana Starch Oxidized under Different Conditions Starch‐Stärke, 61(3‐4), 206-213 doi:doi:10.1002/star.200800033 62 Sangseethong, K., Lertphanich, S., Sriroth, K (2009) Physicochemical Properties of Oxidized Cassava Starch Prepared under Various Alkalinity Levels Starch‐Stärke, 61(2), 92-100 doi:doi:10.1002/star.200800048 64 Sangseethong, K., Termvejsayanon, N., Sriroth, K (2010) Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches Carbohydrate Polymers, 82(2), 446-453 doi:https://doi.org/10.1016/j.carbpol.2010.05.003 65 Sasaki, T J J A R Q J (2005) Effect of wheat starch characteristics on the gelatinization, retrogradation, and gelation properties 39(4), 253-260 66 Schmorak, J., Lewin, M (1963) The chemical and physicochemical properties of wheat starch mildly oxidized with alkaline sodium hypochlorite Journal of Polymer Science Part A: General Papers, 1(8), 2601-2620 doi:doi:10.1002/pol.1963.100010808 54 67 Shi, Y.-C., Seib, P A J C P (1995) Fine structure of maize starches from four wx-containing genotypes of the W64A inbred line in relation to gelatinization and retrogradation 26(2), 141-147 68 Shingel, K I (2002) Determination of structural peculiarities of dexran, pullulan and ╬│-irradiated pullulan by Fourier-transform IR spectroscopy Carbohydrate Research, 337(16), 1445-1451 doi:https://doi.org/10.1016/S0008-6215(02)00209-4 69 Singh, J., Lelane, C., Stewart, R B., Singh, H J F c (2010) Formation of starch spherulites: Role of amylose content and thermal events 121(4), 980-989 70 Singh, N., Inouchi, N., Nishinari, K J F H (2006) Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize 20(6), 923-935 71 Singhal, R S., Kulkarni, P R (1990) Some Properties of Amaranthus paniculatas (Rajgeera) Starch Pastes Starch‐Stärke, 42(1), 5-7 doi:doi:10.1002/star.19900420103 72 Smith, R J (1967) Production and use of hypochlorite oxidized starches Starch chemistry and technology, 2, 620-625 73 Tester, R F., Karkalas, J., Qi, X J J o c S (2004) Starch—composition, fine structure and architecture 39(2), 151-165 74 Trinh, K S., Choi, S J., Moon, T W (2013) Structure and digestibility of debranched and hydrothermally treated water yam starch 65(7ΓÇÉ8), 679-685 doi:doi:10.1002/star.201200149 75 Van Hung, P., Maeda, T., Miskelly, D., Tsumori, R., Morita, N J C P (2008) Physicochemical characteristics and fine structure of high-amylose wheat starches isolated from Australian wheat cultivars 71(4), 656-663 76 van Soest, J J G., Tournois, H., de Wit, D., Vliegenthart, J F G (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy Carbohydrate Research, 279, 201214 doi:https://doi.org/10.1016/0008-6215(95)00270-7 77 Vanier, N L., da Rosa Zavareze, E., Pinto, V ó Z., Klein, B., Botelho, F T., Dias, A R G., Elias, M C (2012) Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite Food Chemistry, 131(4), 1255-1262 doi:https://doi.org/10.1016/j.foodchem.2011.09.114 55 78 Venkitanarayanan, K S., Ezeike, G O., Hung, Y.-C., Doyle, M P (1999) Efficacy of Electrolyzed Oxidizing Water for Inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes 65(9), 4276-4279 79 Vicentini, N M., Dupuy, N., Leitzelman, M., Cereda, M P., Sobral, P J A (2005) Prediction of Cassava Starch Edible Film Properties by Chemometric Analysis of Infrared Spectra Spectroscopy Letters, 38(6), 749-767 doi:10.1080/00387010500316080 80 Viswanath, D S., Ghosh, T K., Prasad, D H., Dutt, N V., Rani, K Y (2007) Viscometers In Viscosity of Liquids (pp 9-107): Springer 81 Waduge, R., Xu, S., Seetharaman, K J C p (2010) Iodine absorption properties and its effect on the crystallinity of developing wheat starch granules 82(3), 786-794 82 Waduge, R N (2012) Morphology and molecular organization of developing wheat starch granules 83 Wang, S., Li, C., Copeland, L., Niu, Q., Wang, S J C R i F S., Safety, F (2015) Starch retrogradation: A comprehensive review 14(5), 568-585 84 Wang, S., Sharp, P., Copeland, L J F c (2011) Structural and functional properties of starches from field peas 126(4), 1546-1552 85 Wang, X., Cai, J., Liu, F., Jin, M., Yu, H., Jiang, D., Cao, W J J o C S (2012) Pre-anthesis high temperature acclimation alleviates the negative effects of postanthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat 55(3), 331-336 86 Wang, Y.-J., Wang, L J C p (2003) Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite 52(3), 207217 87 Warren, F J., Gidley, M J., Flanagan, B M (2016) Infrared spectroscopy as a tool to characterise starch ordered structureΓÇưa joint FTIRΓÇơATR, NMR, XRD and DSC study Carbohydrate Polymers, 139, 35-42 doi:https://doi.org/10.1016/j.carbpol.2015.11.066 89 90 Wurzburg, O B (1986) Modified starches: properties and uses Xie, S X., Qiang Liu, and Steve W Cui (2005) Starch modification and applications: CRC Press, Boca Raton: FL 56 91 Yoshimoto, Y., Tashiro, J., Takenouchi, T., Takeda, Y J C C (2000) Molecular structure and some physicochemical properties of high‐amylose barley starches 77(3), 279-285 92 Zhou, F., Liu, Q., Zhang, H., Chen, Q., Kong, B (2016) Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility International Journal of Biological Macromolecules, 84, 410-417 doi:https://doi.org/10.1016/j.ijbiomac.2015.12.050 93 Zhu, Q., Sjöholm, R., Nurmi, K (1998) Structural characterization of oxidized potato starch Carbohydrate Research, 309(2), 213-218 doi:https://doi.org/10.1016/S0008-6215(98)00138-4 94 Zobel, H J S S (1988) Starch crystal transformations and their industrial importance 40(1), 1-7 57 PHỤ LỤC Mau Duncan a 15 30 45 90 150 120 Sig Kết ANOVA độ truyền suốt hàm lượng am Mau a Duncan 90 120 150 45 15 30 Sig Kết ANOVA mức độ khử Mau Duncan a 30 45 15 150 90 120 Sig 58 Kết ANOVA mức độ tinh thể Mau_DRC Duncan a 150 15 120 90 45 30 Sig 59 ... sát ảnh hưởng thời gian oxi hóa lên tính chất nhiều loại tinh bột khác K Sangseethong, Termvejsayanon, and Sriroth (2010) khảo sát ảnh hướng thời gian oxi hóa lên tính chất hóa lý tinh bột oxi hóa. .. Các tính chất cấu trúc tính chất hóa lý phân tích để làm rõ ảnh hưởng thời gian oxi hóa kỹ thuật điện phân Kết sau trình oxi hóa cho thấy hàm lượng carbonyl carbonxyl tăng cao tinh bột tự nhiên,... enthalpy trinh gel hóa tăng thời gian oxi hóa Chan, Bhat, and Karim (2009) khỏa sát thời gian oxi hóa ozone đến tính chất hóa lý tính cơng nghệ loại tinh bột cho thấy tinh bột oxi hóa có độ nhớt

Ngày đăng: 20/12/2021, 06:18

Xem thêm:

HÌNH ẢNH LIÊN QUAN

Hình 1.1. Hình ảnh cấu trúc cơ bản của amylose và amylopectin. Hình ảnh phóng to cấu trúc phân tử (Pérez và Bertoft, 2010). - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 1.1. Hình ảnh cấu trúc cơ bản của amylose và amylopectin. Hình ảnh phóng to cấu trúc phân tử (Pérez và Bertoft, 2010) (Trang 21)
Hạt tinh bột xuất hiện với nhiều hình dạng và kắch cỡ khác nhau (hình cầu, hình elip, đa giác, tiểu cầu và bất thường) - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
t tinh bột xuất hiện với nhiều hình dạng và kắch cỡ khác nhau (hình cầu, hình elip, đa giác, tiểu cầu và bất thường) (Trang 22)
Hình 1.3. Giản đồ tán xạ ti aX của các tinh thể A, B, Cvà V (Zobel, 1988) 1.3.3.Phổ FITR của tinh bột - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 1.3. Giản đồ tán xạ ti aX của các tinh thể A, B, Cvà V (Zobel, 1988) 1.3.3.Phổ FITR của tinh bột (Trang 25)
Bảng 1.1. Các phản ứng xảy ra ở anode (+) và cathode (-) trong quá trình điện phân dung dịch NaCl - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Bảng 1.1. Các phản ứng xảy ra ở anode (+) và cathode (-) trong quá trình điện phân dung dịch NaCl (Trang 31)
Hình 1.4. Hypochlorite oxy hóa tinh bột, cho thấy sự hình thành carbonyl và carboxyl - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 1.4. Hypochlorite oxy hóa tinh bột, cho thấy sự hình thành carbonyl và carboxyl (Trang 32)
Hình 2.1. Sơ đồ quá trình oxy hóa tinh bột bằng kĩ thuật điện phân 2.2.2. Xác định pH, ORP, nồng độ Chlorine (FAC) - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 2.1. Sơ đồ quá trình oxy hóa tinh bột bằng kĩ thuật điện phân 2.2.2. Xác định pH, ORP, nồng độ Chlorine (FAC) (Trang 38)
2.2.9. Loại hình tinh thể và mức độ tinh thể tương đối - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
2.2.9. Loại hình tinh thể và mức độ tinh thể tương đối (Trang 46)
Hình 2.2. Sơ đồ nghiên cứu ảnh hưởng thời gian oxi hóa bằng kỹ thuật điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 2.2. Sơ đồ nghiên cứu ảnh hưởng thời gian oxi hóa bằng kỹ thuật điện phân (Trang 47)
Hình 3.1. Sự thay đổi nồng độ chlorine tổng trong quá trình điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.1. Sự thay đổi nồng độ chlorine tổng trong quá trình điện phân (Trang 49)
Hình 3.3. Sự thay đổi pH và thế oxi hóa khử trong quá trình điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.3. Sự thay đổi pH và thế oxi hóa khử trong quá trình điện phân (Trang 50)
Hình 3.2. Sự thay đổi hiệu điện thế và cường độ dòng điện theo thời gian điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.2. Sự thay đổi hiệu điện thế và cường độ dòng điện theo thời gian điện phân (Trang 50)
Vô định hình - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
nh hình (Trang 53)
Bảng 3.2. Đỉnh hấp thu các nhóm chức chủ yếu của tinh bột Đỉnh - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Bảng 3.2. Đỉnh hấp thu các nhóm chức chủ yếu của tinh bột Đỉnh (Trang 56)
Hình 3.5. Phổ hồng ngoại (FTIR) của tinh bột từ số sóng 4400-400 cm-1 Bảng 3. 3. Tỷ lệ vùng α-helice (1047 cm-1)/vùng vô định hình (1022 cm-1 ), hiệu suất - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.5. Phổ hồng ngoại (FTIR) của tinh bột từ số sóng 4400-400 cm-1 Bảng 3. 3. Tỷ lệ vùng α-helice (1047 cm-1)/vùng vô định hình (1022 cm-1 ), hiệu suất (Trang 57)
Hình 3.6. Hàm lượng Carbonyl (CO/100GU) và Carboxyl (COOH/100GU) của tinh bột sắn oxy hóa theo thời gian trong quá trình điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.6. Hàm lượng Carbonyl (CO/100GU) và Carboxyl (COOH/100GU) của tinh bột sắn oxy hóa theo thời gian trong quá trình điện phân (Trang 60)
Hình 3.7. Độ nhớt reduce (ηred) của các mẫu tinh bột oxy hóa khảo sát theo nồng độ (g/ml) tại 30oC - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.7. Độ nhớt reduce (ηred) của các mẫu tinh bột oxy hóa khảo sát theo nồng độ (g/ml) tại 30oC (Trang 62)
Bảng 3.4. Độ nhớt nội tại, khối lượng phân tử, mức độ polymer hóa của các mẫu tinh bột - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Bảng 3.4. Độ nhớt nội tại, khối lượng phân tử, mức độ polymer hóa của các mẫu tinh bột (Trang 62)
Hình 3.8 - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.8 (Trang 65)
Hình 3.10. Độ trong của gel tinh bột oxy hóa theo thời gian điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.10. Độ trong của gel tinh bột oxy hóa theo thời gian điện phân (Trang 72)
Hình 3.11. Mức độ đầu khử ở tinh bột oxy hóa theo thời gian điện phân - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.11. Mức độ đầu khử ở tinh bột oxy hóa theo thời gian điện phân (Trang 72)
Hình 3.13 - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.13 (Trang 76)
Hình 3.12. Độ trương nở của tinh bột oxy hóa và tinh bột tự nhiên tại các nhiệt độ - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.12. Độ trương nở của tinh bột oxy hóa và tinh bột tự nhiên tại các nhiệt độ (Trang 76)
Hình 3.14. Sự ổn định lạnh đông-rã đông của các mẫu tinh bột oxy hóa và tinh bột tự nhiên - (Đồ án tốt nghiệp) ảnh hưởng của thời gian oxi hóa lên cấu trúc và tính chất công nghệ của tinh bột sắn biến tính abwngf kỹ thuật điện phân
Hình 3.14. Sự ổn định lạnh đông-rã đông của các mẫu tinh bột oxy hóa và tinh bột tự nhiên (Trang 79)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w