Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 43 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
43
Dung lượng
370,69 KB
Nội dung
Chapter 5
5-1
(a)
k =
F
y
; y =
F
k
1
+
F
k
2
+
F
k
3
so
k =
1
(1/k
1
) + (1/k
2
) + (1/k
3
)
Ans.
(b)
F = k
1
y + k
2
y + k
3
y
k = F/y = k
1
+ k
2
+ k
3
Ans.
(c)
1
k
=
1
k
1
+
1
k
2
+ k
3
k =
1
k
1
+
1
k
2
+ k
3
−1
5-2 For a torsion bar,
k
T
= T/θ = Fl/θ,
and so
θ = Fl/k
T
.
For a cantilever,
k
C
= F/δ,
δ = F/k
C
.
For the assembly,
k = F/y, y = F/k = lθ +δ
So
y =
F
k
=
Fl
2
k
T
+
F
k
C
Or
k =
1
(l
2
/k
T
) + (1/k
C
)
Ans.
5-3 For a torsion bar,
k = T/θ = GJ /l
where
J = πd
4
/32
. So
k = πd
4
G/(32l) = Kd
4
/l
. The
springs, 1 and 2, are in parallel so
k = k
1
+ k
2
= K
d
4
l
1
+ K
d
4
l
2
= Kd
4
1
x
+
1
l − x
And
θ =
T
k
=
T
Kd
4
1
x
+
1
l − x
Then
T = kθ =
Kd
4
x
θ +
Kd
4
θ
l − x
k
2
k
1
k
3
F
k
2
k
1
k
3
y
F
k
1
k
2
k
3
y
shi20396_ch05.qxd 8/18/03 10:59 AM Page 106
Chapter 5 107
Thus
T
1
=
Kd
4
x
θ; T
2
=
Kd
4
θ
l − x
If
x = l/2
, then
T
1
= T
2
.
If
x < l/2
, then
T
1
> T
2
Using
τ = 16T /πd
3
and
θ = 32Tl/(Gπd
4
)
gives
T =
πd
3
τ
16
and so
θ
all
=
32l
Gπd
4
·
πd
3
τ
16
=
2lτ
all
Gd
Thus, if
x < l/2
, the allowable twist is
θ
all
=
2xτ
all
Gd
Ans.
Since
k = Kd
4
1
x
+
1
l − x
=
π Gd
4
32
1
x
+
1
l − x
Ans.
Then the maximum torque is found to be
T
max
=
πd
3
xτ
all
16
1
x
+
1
l − x
Ans.
5-4 Both legs have the same twist angle. From Prob. 5-3, for equal shear, d is linear in x. Thus,
d
1
= 0.2d
2
Ans.
k =
π G
32
(0.2d
2
)
4
0.2l
+
d
4
2
0.8l
=
π G
32l
1.258d
4
2
Ans.
θ
all
=
2(0.8l)τ
all
Gd
2
Ans.
T
max
= kθ
all
= 0.198d
3
2
τ
all
Ans.
5-5
A = πr
2
= π(r
1
+ x tan α)
2
dδ =
Fdx
AE
=
Fdx
Eπ(r
1
+ x tan α)
2
δ =
F
π E
l
0
dx
(r
1
+ x tan α)
2
=
F
π E
−
1
tan α(r
1
+ x tan α)
l
0
=
F
π E
1
r
1
(r
1
+l tan α)
l
x
␣
dx
F
F
r
1
shi20396_ch05.qxd 8/18/03 10:59 AM Page 107
108 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Then
k =
F
δ
=
π Er
1
(r
1
+l tan α)
l
=
EA
1
l
1 +
2l
d
1
tan α
Ans.
5-6
F = (T + dT) + w dx − T = 0
dT
dx
=−w
Solution is
T =−wx + c
T |
x=0
= P +wl = c
T =−wx + P + wl
T = P +w(l − x)
The infinitesmal stretch of the free body of original length
dx
is
dδ =
Tdx
AE
=
P +w(l − x)
AE
dx
Integrating,
δ =
l
0
[P +w(l − x)] dx
AE
δ =
Pl
AE
+
wl
2
2AE
Ans.
5-7
M = wlx −
wl
2
2
−
wx
2
2
EI
dy
dx
=
wlx
2
2
−
wl
2
2
x −
wx
3
6
+ C
1
,
dy
dx
= 0
at
x = 0
, І
C
1
= 0
EIy =
wlx
3
6
−
wl
2
x
2
4
−
wx
4
24
+ C
2
,
y = 0
at
x = 0
, І
C
2
= 0
y =
wx
2
24EI
(4lx − 6l
2
− x
2
)
Ans.
l
x
dx
P
Enlarged free
body of length dx
w is cable’s weight
per foot
T ϩ dT
w dx
T
shi20396_ch05.qxd 8/18/03 10:59 AM Page 108
Chapter 5 109
5-8
M = M
1
= M
B
EI
dy
dx
= M
B
x +C
1
,
dy
dx
= 0
at
x = 0
, І
C
1
= 0
EIy =
M
B
x
2
2
+ C
2
,
y = 0
at
x = 0
, І
C
2
= 0
y =
M
B
x
2
2EI
Ans.
5-9
ds =
dx
2
+ dy
2
= dx
1 +
dy
dx
2
Expand right-hand term by Binomial theorem
1 +
dy
dx
2
1/2
= 1 +
1
2
dy
dx
2
+ ···
Since
dy/dx
is small compared to 1, use only the first two terms,
dλ = ds −dx
= dx
1 +
1
2
dy
dx
2
− dx
=
1
2
dy
dx
2
dx
І
λ =
1
2
l
0
dy
dx
2
dx
Ans.
This contraction becomes important in a nonlinear, non-breaking extension spring.
5-10
y =−
4ax
l
2
(l − x) =−
4ax
l
−
4a
l
2
x
2
dy
dx
=−
4a
l
−
8ax
l
2
dy
dx
2
=
16a
2
l
2
−
64a
2
x
l
3
+
64a
2
x
2
l
4
λ =
1
2
l
0
dy
dx
2
dx =
8
3
a
2
l
Ans.
y
ds
dy
dx
shi20396_ch05.qxd 8/18/03 10:59 AM Page 109
110 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
5-11
y = a sin
π x
l
dy
dx
=
aπ
l
cos
π x
l
dy
dx
2
=
a
2
π
2
l
2
cos
2
π x
l
λ =
1
2
l
0
dy
dx
2
dx
λ =
π
2
4
a
2
l
= 2.467
a
2
l
Ans.
Compare result with that of Prob. 5-10. See Charles R. Mischke, Elements of Mechanical
Analysis, Addison-Wesley, Reading, Mass., 1963, pp. 244–249, for application to a nonlinear
extension spring.
5-12
I = 2(5.56) = 11.12 in
4
y
max
= y
1
+ y
2
=−
wl
4
8EI
+
Fa
2
6EI
(a − 3l)
Here
w = 50/12 = 4.167
lbf/in, and
a = 7(12) = 84
in, and
l = 10(12) = 120
in.
y
1
=−
4.167(120)
4
8(30)(10
6
)(11.12)
=−0.324 in
y
2
=−
600(84)
2
[3(120) − 84]
6(30)(10
6
)(11.12)
=−0.584 in
So
y
max
=−0.324 −0.584 =−0.908
in Ans.
M
0
=−Fa − (wl
2
/2)
=−600(84) − [4.167(120)
2
/2]
=−80 400 lbf ·in
c = 4 − 1.18 = 2.82 in
σ
max
=
−My
I
=−
(−80 400)(−2.82)
11.12
(10
−3
)
=−20.4 kpsi Ans.
σ
max
is at the bottom of the section.
shi20396_ch05.qxd 8/18/03 10:59 AM Page 110
Chapter 5 111
5-13
R
O
=
7
10
(800) +
5
10
(600) = 860 lbf
R
C
=
3
10
(800) +
5
10
(600) = 540 lbf
M
1
= 860(3)(12) = 30.96(10
3
) lbf · in
M
2
= 30.96(10
3
) + 60(2)(12)
= 32.40(10
3
) lbf · in
σ
max
=
M
max
Z
⇒ 6 =
32.40
Z
Z = 5.4in
3
y|
x=5ft
=
F
1
a[l − (l/2)]
6EIl
l
2
2
+ a
2
− 2l
l
2
−
F
2
l
3
48EI
−
1
16
=
800(36)(60)
6(30)(10
6
)I (120)
[60
2
+ 36
2
− 120
2
] −
600(120
3
)
48(30)(10
6
)I
I = 23.69 in
4
⇒ I /2 = 11.84 in
4
Select two
6 in-8.2 lbf/ft
channels; from Table A-7,
I = 2(13.1) = 26.2in
4
,
Z =2(4.38) in
3
y
max
=
23.69
26.2
−
1
16
=−0.0565 in
σ
max
=
32.40
2(4.38)
= 3.70 kpsi
5-14
I =
π
64
(1.5
4
) = 0.2485 in
4
Superpose beams A-9-6 and A-9-7,
y
A
=
300(24)(16)
6(30)(10
6
)(0.2485)(40)
(16
2
+ 24
2
− 40
2
)
+
12(16)
24(30)(10
6
)(0.2485)
[2(40)(16
2
) − 16
3
− 40
3
]
y
A
=−0.1006 in Ans.
y|
x=20
=
300(16)(20)
6(30)(10
6
)(0.2485)(40)
[20
2
+ 16
2
− 2(40)(20)]
−
5(12)(40
4
)
384(30)(10
6
)(0.2485)
=−0.1043 in Ans.
% difference =
0.1043 −0.1006
0.1006
(100) = 3.79% Ans.
R
C
M
1
M
2
R
O
A
O
B
C
V (lbf)
M
(lbf
•in)
800 lbf 600 lbf
3 ft
860
60
O
Ϫ540
2 ft 5 ft
shi20396_ch05.qxd 8/18/03 10:59 AM Page 111
112 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
5-15
I =
1
12
3
8
(1.5
3
) = 0.105 47 in
4
From Table A-9-10
y
C
=−
Fa
2
3EI
(l +a)
dy
AB
dx
=
Fa
6EIl
(l
2
− 3x
2
)
Thus,
θ
A
=
Fal
2
6EIl
=
Fal
6EI
y
D
=−θ
A
a =−
Fa
2
l
6EI
With both loads,
y
D
=−
Fa
2
l
6EI
−
Fa
2
3EI
(l +a)
=−
Fa
2
6EI
(3l + 2a) =−
120(10
2
)
6(30)(10
6
)(0.105 47)
[3(20) + 2(10)]
=−0.050 57 in Ans.
y
E
=
2Fa(l/2)
6EIl
l
2
−
l
2
2
=
3
24
Fal
2
EI
=
3
24
120(10)(20
2
)
(30)(10
6
)(0.105 47)
= 0.018 96 in Ans.
5-16
a = 36
in,
l = 72
in,
I = 13
in
4
,
E = 30
Mpsi
y =
F
1
a
2
6EI
(a − 3l) −
F
2
l
3
3EI
=
400(36)
2
(36 − 216)
6(30)(10
6
)(13)
−
400(72)
3
3(30)(10
6
)(13)
=−0.1675 in Ans.
5-17
I = 2(1.85) = 3.7in
4
Adding the weight of the channels,
2(5)/12 = 0.833 lbf/in,
y
A
=−
wl
4
8EI
−
Fl
3
3EI
=−
10.833(48
4
)
8(30)(10
6
)(3.7)
−
220(48
3
)
3(30)(10
6
)(3.7)
=−0.1378 in Ans.
A
a
D
C
F
B
a
E
A
shi20396_ch05.qxd 8/18/03 10:59 AM Page 112
Chapter 5 113
5-18
I = πd
4
/64 = π(2)
4
/64 = 0.7854 in
4
Tables A-9-5 and A-9-9
y =−
F
2
l
3
48EI
+
F
1
a
24EI
(4a
2
− 3l
2
)
=−
120(40)
3
48(30)(10
6
)(0.7854)
+
80(10)(400 − 4800)
24(30)(10
6
)(0.7854)
=−0.0130 in Ans.
5-19
(a) Useful relations
k =
F
y
=
48EI
l
3
I =
kl
3
48E
=
2400(48)
3
48(30)10
6
= 0.1843 in
4
From
I = bh
3
/12
h =
3
12(0.1843)
b
Form a table. First, Table A-17 gives likely available fractional sizes for b:
8
1
2
, 9, 9
1
2
, 10 in
For h:
1
2
,
9
16
,
5
8
,
11
16
,
3
4
For available b what is necessary h for required I?
(b)
I = 9(0.625)
3
/12 = 0.1831 in
4
k =
48EI
l
3
=
48(30)(10
6
)(0.1831)
48
3
= 2384 lbf/in
F =
4σ I
cl
=
4(90 000)(0.1831)
(0.625/2)(48)
= 4394 lbf
y =
F
k
=
4394
2384
= 1.84 in Ans.
choose 9"
×
5
8
"
Ans.
b
3
12(0.1843)
b
8.5 0.638
9.0 0.626
←
9.5 0.615
10.0 0.605
shi20396_ch05.qxd 8/18/03 10:59 AM Page 113
114 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
5-20
Torque = (600 −80)(9/2) = 2340 lbf · in
(T
2
− T
1
)
12
2
= T
2
(1 − 0.125)(6) = 2340
T
2
=
2340
6(0.875)
= 446 lbf, T
1
= 0.125(446) = 56 lbf
M
0
= 12(680) − 33(502) + 48R
2
= 0
R
2
=
33(502) − 12(680)
48
= 175 lbf
R
1
= 680 − 502 + 175 = 353 lbf
We will treat this as two separate problems and then sum the results.
First, consider the 680 lbf load as acting alone.
z
OA
=−
Fbx
6EIl
(x
2
+ b
2
−l
2
); here b = 36
",
x = 12
",
l = 48
",
F = 680 lbf
Also,
I =
πd
4
64
=
π(1.5)
4
64
= 0.2485 in
4
z
A
=−
680(36)(12)(144 + 1296 − 2304)
6(30)(10
6
)(0.2485)(48)
=+0.1182 in
z
AC
=−
Fa(l − x)
6EIl
(x
2
+ a
2
− 2lx)
where
a = 12
" and
x = 21 + 12 = 33
"
z
B
=−
680(12)(15)(1089 + 144 − 3168)
6(30)(10
6
)(0.2485)(48)
=+0.1103 in
Next, consider the 502 lbf load as acting alone.
680 lbf
A
C
B
O
R
1
ϭ 510 lbf R
2
ϭ 170 lbf
12" 21" 15"
z
x
R
2
ϭ 175 lbf680 lbf
AC
BO
R
1
ϭ 353 lbf
502 lbf
12" 21" 15"
z
x
shi20396_ch05.qxd 8/18/03 10:59 AM Page 114
Chapter 5 115
z
OB
=
Fbx
6EIl
(x
2
+ b
2
−l
2
), where b = 15
"
,
x = 12
",
l = 48
",
I = 0.2485 in
4
Then,
z
A
=
502(15)(12)(144 + 225 − 2304)
6(30)(10
6
)(0.2485)(48)
=−0.081 44 in
For
z
B
use
x = 33
"
z
B
=
502(15)(33)(1089 +225 −2304)
6(30)(10
6
)(0.2485)(48)
=−0.1146 in
Therefore, by superposition
z
A
=+0.1182 −0.0814 =+0.0368 in Ans.
z
B
=+0.1103 −0.1146 =−0.0043 in Ans.
5-21
(a) Calculate torques and moment of inertia
T = (400 −50)(16/2) = 2800 lbf ·in
(8T
2
− T
2
)(10/2) = 2800 ⇒ T
2
= 80 lbf, T
1
= 8(80) = 640 lbf
I =
π
64
(1.25
4
) = 0.1198 in
4
Due to 720 lbf, flip beam A-9-6 such that
y
AB
→ b = 9, x = 0, l = 20, F =−720 lbf
θ
B
=
dy
dx
x=0
=−
Fb
6EIl
(3x
2
+ b
2
−l
2
)
=−
−720(9)
6(30)(10
6
)(0.1198)(20)
(0 + 81 −400) =−4.793(10
−3
) rad
y
C
=−12θ
B
=−0.057 52 in
Due to 450 lbf, use beam A-9-10,
y
C
=−
Fa
2
3EI
(l +a) =−
450(144)(32)
3(30)(10
6
)(0.1198)
=−0.1923 in
450 lbf720 lbf
9" 11" 12"
O
y
A
B
C
R
O
R
B
A
CB
O
R
1
R
2
12"
502 lbf
21" 15"
z
x
shi20396_ch05.qxd 8/18/03 10:59 AM Page 115
[...]... 200(43 ) 1 .56 6(1 05 ) 2 − − = E I1 I2 2 =− 30(106 ) 1.28(104 ) 1 .56 6(1 05 ) + 0.24 85 0.7 854 = −0.016 73 in Ans −x ∂M = ∂Q 2 [1200x − 100(x − 4)2 ] − x dx 2 shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 129 129 Chapter 5 5-49 O x 3 Fa 5 l A O 4 Fa 5 l 4 F 5 A A 3 F 5 a a 3 F 5 B B 3 F 5 x 4 F 5 4 F 5 AB ∂M =x ∂F M = Fx N= 3 F 5 ∂N 3 = ∂F 5 T = 4 Fa 5 ∂T 4 = a ∂F 5 M1 = 4 Fx ¯ 5 ∂ M1 4 = x ¯ ∂F 5 M2 = 3 Fa 5 ∂ M2... 6 6 3 B: x = 0 .5 m, y B = −6.70(10−4 ) m = −0.670 mm Ans C: x = 1 m, yC = 38 85 3 1 15 830 − (1 ) + (1 − 0 .5) 3 − 62.0 45( 1) 3) 167.2(10 6 6 = −2.27(10−3 ) m = −2.27 mm Ans D: x = 1 .5, 38 85 1 15 830 − (1 .53 ) + (1 .5 − 0 .5) 3 3) 167.2(10 6 6 10 − (103 )(1 .5 − 1) 3 − 62.0 45( 1 .5) 3 = −3.39(10−4 ) m = −0.339 mm Ans yD = shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 1 35 1 35 Chapter 5 5-60 y FBE 50 0 lbf 3" A 3"... ∂F 5 OA δB = 1 ∂u = ∂F EI + = I = δB = = l 0 Fl AE J = 2I, 64Fa 3 9 + 4 3Eπd 25 (3 /5) F(3 /5) l (4 /5) Fa(4a /5) l + AE JG F x(x) dx + 0 1 EI 9 Fa 3 + 3E I 25 π 4 d , 64 a 4 Fx ¯ 5 + 16 25 A= 4Fl πd 2 E 4 1 x dx + ¯ ¯ 5 EI Fa 2l JG + l 0 3 3 Fa a dx ¯ 55 Fl 3 EI 16 75 + 9 25 Fa 2l EI π 2 d 4 + 16 25 32Fa 2l πd 4 G + 16 75 64Fl 3 Eπd 4 E 4F 400a 3 + 27ld 2 + 384a 2l + 256 l 3 + 432a 2l 4 75 Ed G + 9 25 Ans... 3(π/4)(0.0801) 2 σs = 65. 36 = 21 300 psi = 21.3 kpsi Ans (π/4)(0.06 252 ) 5- 51 σb = 0.9( 85) = 76 .5 kpsi Ans (a) Bolt stress Bolt force Cylinder stress σc = − π 4 Fb = 6(76 .5) (0.3 752 ) = 50 .69 kips Fb 50 .69 = − 15. 19 kpsi Ans =− Ac (π/4)(4 .52 − 42 ) (b) Force from pressure P= π D2 π(42 ) p= (600) = 754 0 lbf = 7 .54 kip 4 4 50 .69 Ϫ Pc 50 .69 ϩ Pb 6 bolts Fx = 0 x Pb + Pc = 7 .54 (1) P ϭ 7 .54 kip Pb L Pc L =... 0.0044 = −0.0 45 87 in Ans shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 121 121 Chapter 5 5-31 (0.1F)(1 .5) TL = = 9.292(10−4 ) F JG (π/32)(0.0124 )(79.3)(109 ) θ= Due to twist δ B 1 = 0.1(θ) = 9.292(10 5 ) F Due to bending F(0.13 ) F L3 = = 1 .58 2(10−6 ) F 3E I 3(207)(109 )(π/64)(0.0124 ) δB2 = δ B = 1 .58 2(10−6 ) F + 9.292(10 5 ) F = 9. 450 (10 5 ) F 1 = 10 .58 (103 ) N/m = 10 .58 kN/m Ans 9. 450 (10 5 ) k= 5- 32 F A... )(0.1667)(−1.4668)(10−3 ) = −26.67(63 ) + C1 (6) C1 = 55 2 .58 lbf · in2 yB = 1 [−26.67(183 ) + 40(18 − 6) 3 + 55 2 .58 (18)] 6 )(0.1667) 10(10 = −0.0 45 87 in 5- 41 I1 = R1 = Ans π (1 .54 ) = 0.24 85 in4 64 200 (12) = 1200 lbf 2 For 0 ≤ x ≤ 16 in, M = 1200x − I2 = π 4 (2 ) = 0.7 854 in4 64 MրI 200 x −4 2 2 x shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 1 25 1 25 Chapter 5 1200x M = − 4800 I I1 1 1 − I1 I2 x − 4 0 − 1200... Mechanical Engineering Design σB E = 10 45. 2 = 13 627 psi = 13.6 kpsi Ans (π/4) (5/ 16) 2 σD F = − 45. 2 = 58 9 psi Ans (π/4) (5/ 16) 2 yA = 1 (−11 52 2) = −0.007 68 in Ans 1 .5( 106 ) yB = 250 3 1 − (3 ) + 4136.4(3) − 11 52 2 = −0.000 909 in Ans 1 .5( 106 ) 3 yD = 250 3 1 10 45. 2 59 0.4 − (9 ) + (9 − 3) 3 + (9 − 6) 3 + 4136.4(9) − 11 52 2 6) 1 .5( 10 3 6 6 = −4.93(10 5 ) in Ans 5- 61 F Q (dummy load) ∂M = R(1 − cos... /∂ F)L dx + ∂F JG −F x(−x) d x + ¯ ¯ ¯ 0 0.1F(0.1)(1 .5) JG 0.015F F (0.13 ) + 3E I JG Where π (0.012) 4 = 1.0179(10−9 ) m4 64 J = 2I = 2.0 358 (10−9 ) m4 I = δB = F k= 5- 48 0.001 3(207)(109 )(1.0179)(10−9 ) + 0.0 15 = 9. 45( 10 5 ) F −9 )(79.3)(109 ) 2.0 358 (10 1 = 10 .58 (103 ) N/m = 10 .58 kN/m Ans 9. 45( 10 5 ) From Prob 5- 41, I1 = 0.24 85 in4 , I2 = 0.7 854 in4 For a dummy load ↑ Q at the center 200 Q x − 4... τ1 = 3 πd π(7/8)3 τ2 = 16(969.4) = 252 8 psi Ans π(1. 25) 3 5- 56 10 kip 5 kip FA RO FB x RC (1) Arbitrarily, choose RC as redundant reaction Fx = 0, (2) 10(103 ) − 5( 103 ) − R O − RC = 0 R O + RC = 5( 103 ) lbf (3) δC = RC ( 15) [10(103 ) − 5( 103 ) − RC ]20 [5( 103 ) + RC ] − (10) − =0 AE AE AE −45RC + 5( 104 ) = 0 ⇒ RC = 1111 lbf Ans R O = 50 00 − 1111 = 3889 lbf Ans 5- 57 w A MC B a C RC RB l x (1) Choose... dθ = = 5- 67 π P R3 π2 2E I 2π 2 (3π 2 − 8π − 4) P R 3 8π EI π 4 + π2 +4 π 4 − 2π 2 − 4π + 2π Ans Must use Eq (5- 34) A = 80(60) − 40(60) = 2400 mm2 R= ( 25 + 40)(80)(60) − ( 25 + 20 + 30)(40)(60) = 55 mm 2400 Section is equivalent to the “T” section of Table 4 -5 rn = 60(20) + 20(60) = 45. 9 654 mm 60 ln[( 25 + 20)/ 25] + 20 ln[(80 + 25) /( 25 + 20)] e = R − rn = 9.0 35 mm Straight section y z Iz = 30 mm 50 mm . 15& quot;
z
x
R
2
ϭ 1 75 lbf680 lbf
AC
BO
R
1
ϭ 353 lbf
50 2 lbf
12" 21" 15& quot;
z
x
shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 114
Chapter 5 1 15
z
OB
=
Fbx
6EIl
(x
2
+. C
1
(6)
C
1
= 55 2 .58 lbf ·in
2
y
B
=
1
10(10
6
)(0.1667)
[−26.67(18
3
) + 40(18 − 6)
3
+ 55 2 .58 (18)]
=−0.0 45 87 in Ans.
5- 41
I
1
=
π
64
(1 .5
4
) = 0.24 85 in
4
I
2
=
π
64
(2
4
)