1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu shi20396 chương 5 ppt

43 321 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 43
Dung lượng 370,69 KB

Nội dung

Chapter 5 5-1 (a) k = F y ; y = F k 1 + F k 2 + F k 3 so k = 1 (1/k 1 ) + (1/k 2 ) + (1/k 3 ) Ans. (b) F = k 1 y + k 2 y + k 3 y k = F/y = k 1 + k 2 + k 3 Ans. (c) 1 k = 1 k 1 + 1 k 2 + k 3 k =  1 k 1 + 1 k 2 + k 3  −1 5-2 For a torsion bar, k T = T/θ = Fl/θ, and so θ = Fl/k T . For a cantilever, k C = F/δ, δ = F/k C . For the assembly, k = F/y, y = F/k = lθ +δ So y = F k = Fl 2 k T + F k C Or k = 1 (l 2 /k T ) + (1/k C ) Ans. 5-3 For a torsion bar, k = T/θ = GJ /l where J = πd 4 /32 . So k = πd 4 G/(32l) = Kd 4 /l . The springs, 1 and 2, are in parallel so k = k 1 + k 2 = K d 4 l 1 + K d 4 l 2 = Kd 4  1 x + 1 l − x  And θ = T k = T Kd 4  1 x + 1 l − x  Then T = kθ = Kd 4 x θ + Kd 4 θ l − x k 2 k 1 k 3 F k 2 k 1 k 3 y F k 1 k 2 k 3 y shi20396_ch05.qxd 8/18/03 10:59 AM Page 106 Chapter 5 107 Thus T 1 = Kd 4 x θ; T 2 = Kd 4 θ l − x If x = l/2 , then T 1 = T 2 . If x < l/2 , then T 1 > T 2 Using τ = 16T /πd 3 and θ = 32Tl/(Gπd 4 ) gives T = πd 3 τ 16 and so θ all = 32l Gπd 4 · πd 3 τ 16 = 2lτ all Gd Thus, if x < l/2 , the allowable twist is θ all = 2xτ all Gd Ans. Since k = Kd 4  1 x + 1 l − x  = π Gd 4 32  1 x + 1 l − x  Ans. Then the maximum torque is found to be T max = πd 3 xτ all 16  1 x + 1 l − x  Ans. 5-4 Both legs have the same twist angle. From Prob. 5-3, for equal shear, d is linear in x. Thus, d 1 = 0.2d 2 Ans. k = π G 32  (0.2d 2 ) 4 0.2l + d 4 2 0.8l  = π G 32l  1.258d 4 2  Ans. θ all = 2(0.8l)τ all Gd 2 Ans. T max = kθ all = 0.198d 3 2 τ all Ans. 5-5 A = πr 2 = π(r 1 + x tan α) 2 dδ = Fdx AE = Fdx Eπ(r 1 + x tan α) 2 δ = F π E  l 0 dx (r 1 + x tan α) 2 = F π E  − 1 tan α(r 1 + x tan α)  l 0 = F π E 1 r 1 (r 1 +l tan α) l x ␣ dx F F r 1 shi20396_ch05.qxd 8/18/03 10:59 AM Page 107 108 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Then k = F δ = π Er 1 (r 1 +l tan α) l = EA 1 l  1 + 2l d 1 tan α  Ans. 5-6  F = (T + dT) + w dx − T = 0 dT dx =−w Solution is T =−wx + c T | x=0 = P +wl = c T =−wx + P + wl T = P +w(l − x) The infinitesmal stretch of the free body of original length dx is dδ = Tdx AE = P +w(l − x) AE dx Integrating, δ =  l 0 [P +w(l − x)] dx AE δ = Pl AE + wl 2 2AE Ans. 5-7 M = wlx − wl 2 2 − wx 2 2 EI dy dx = wlx 2 2 − wl 2 2 x − wx 3 6 + C 1 , dy dx = 0 at x = 0 , І C 1 = 0 EIy = wlx 3 6 − wl 2 x 2 4 − wx 4 24 + C 2 , y = 0 at x = 0 , І C 2 = 0 y = wx 2 24EI (4lx − 6l 2 − x 2 ) Ans. l x dx P Enlarged free body of length dx w is cable’s weight per foot T ϩ dT w dx T shi20396_ch05.qxd 8/18/03 10:59 AM Page 108 Chapter 5 109 5-8 M = M 1 = M B EI dy dx = M B x +C 1 , dy dx = 0 at x = 0 , І C 1 = 0 EIy = M B x 2 2 + C 2 , y = 0 at x = 0 , І C 2 = 0 y = M B x 2 2EI Ans. 5-9 ds =  dx 2 + dy 2 = dx  1 +  dy dx  2 Expand right-hand term by Binomial theorem  1 +  dy dx  2  1/2 = 1 + 1 2  dy dx  2 + ··· Since dy/dx is small compared to 1, use only the first two terms, dλ = ds −dx = dx  1 + 1 2  dy dx  2  − dx = 1 2  dy dx  2 dx І λ = 1 2  l 0  dy dx  2 dx Ans. This contraction becomes important in a nonlinear, non-breaking extension spring. 5-10 y =− 4ax l 2 (l − x) =−  4ax l − 4a l 2 x 2  dy dx =−  4a l − 8ax l 2   dy dx  2 = 16a 2 l 2 − 64a 2 x l 3 + 64a 2 x 2 l 4 λ = 1 2  l 0  dy dx  2 dx = 8 3 a 2 l Ans. y ds dy dx ␭ shi20396_ch05.qxd 8/18/03 10:59 AM Page 109 110 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 5-11 y = a sin π x l dy dx = aπ l cos π x l  dy dx  2 = a 2 π 2 l 2 cos 2 π x l λ = 1 2  l 0  dy dx  2 dx λ = π 2 4 a 2 l = 2.467 a 2 l Ans. Compare result with that of Prob. 5-10. See Charles R. Mischke, Elements of Mechanical Analysis, Addison-Wesley, Reading, Mass., 1963, pp. 244–249, for application to a nonlinear extension spring. 5-12 I = 2(5.56) = 11.12 in 4 y max = y 1 + y 2 =− wl 4 8EI + Fa 2 6EI (a − 3l) Here w = 50/12 = 4.167 lbf/in, and a = 7(12) = 84 in, and l = 10(12) = 120 in. y 1 =− 4.167(120) 4 8(30)(10 6 )(11.12) =−0.324 in y 2 =− 600(84) 2 [3(120) − 84] 6(30)(10 6 )(11.12) =−0.584 in So y max =−0.324 −0.584 =−0.908 in Ans. M 0 =−Fa − (wl 2 /2) =−600(84) − [4.167(120) 2 /2] =−80 400 lbf ·in c = 4 − 1.18 = 2.82 in σ max = −My I =− (−80 400)(−2.82) 11.12 (10 −3 ) =−20.4 kpsi Ans. σ max is at the bottom of the section. shi20396_ch05.qxd 8/18/03 10:59 AM Page 110 Chapter 5 111 5-13 R O = 7 10 (800) + 5 10 (600) = 860 lbf R C = 3 10 (800) + 5 10 (600) = 540 lbf M 1 = 860(3)(12) = 30.96(10 3 ) lbf · in M 2 = 30.96(10 3 ) + 60(2)(12) = 32.40(10 3 ) lbf · in σ max = M max Z ⇒ 6 = 32.40 Z Z = 5.4in 3 y| x=5ft = F 1 a[l − (l/2)] 6EIl  l 2  2 + a 2 − 2l l 2  − F 2 l 3 48EI − 1 16 = 800(36)(60) 6(30)(10 6 )I (120) [60 2 + 36 2 − 120 2 ] − 600(120 3 ) 48(30)(10 6 )I I = 23.69 in 4 ⇒ I /2 = 11.84 in 4 Select two 6 in-8.2 lbf/ft channels; from Table A-7, I = 2(13.1) = 26.2in 4 , Z =2(4.38) in 3 y max = 23.69 26.2  − 1 16  =−0.0565 in σ max = 32.40 2(4.38) = 3.70 kpsi 5-14 I = π 64 (1.5 4 ) = 0.2485 in 4 Superpose beams A-9-6 and A-9-7, y A = 300(24)(16) 6(30)(10 6 )(0.2485)(40) (16 2 + 24 2 − 40 2 ) + 12(16) 24(30)(10 6 )(0.2485) [2(40)(16 2 ) − 16 3 − 40 3 ] y A =−0.1006 in Ans. y| x=20 = 300(16)(20) 6(30)(10 6 )(0.2485)(40) [20 2 + 16 2 − 2(40)(20)] − 5(12)(40 4 ) 384(30)(10 6 )(0.2485) =−0.1043 in Ans. % difference = 0.1043 −0.1006 0.1006 (100) = 3.79% Ans. R C M 1 M 2 R O A O B C V (lbf) M (lbf •in) 800 lbf 600 lbf 3 ft 860 60 O Ϫ540 2 ft 5 ft shi20396_ch05.qxd 8/18/03 10:59 AM Page 111 112 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 5-15 I = 1 12  3 8  (1.5 3 ) = 0.105 47 in 4 From Table A-9-10 y C =− Fa 2 3EI (l +a) dy AB dx = Fa 6EIl (l 2 − 3x 2 ) Thus, θ A = Fal 2 6EIl = Fal 6EI y D =−θ A a =− Fa 2 l 6EI With both loads, y D =− Fa 2 l 6EI − Fa 2 3EI (l +a) =− Fa 2 6EI (3l + 2a) =− 120(10 2 ) 6(30)(10 6 )(0.105 47) [3(20) + 2(10)] =−0.050 57 in Ans. y E = 2Fa(l/2) 6EIl  l 2 −  l 2  2  = 3 24 Fal 2 EI = 3 24 120(10)(20 2 ) (30)(10 6 )(0.105 47) = 0.018 96 in Ans. 5-16 a = 36 in, l = 72 in, I = 13 in 4 , E = 30 Mpsi y = F 1 a 2 6EI (a − 3l) − F 2 l 3 3EI = 400(36) 2 (36 − 216) 6(30)(10 6 )(13) − 400(72) 3 3(30)(10 6 )(13) =−0.1675 in Ans. 5-17 I = 2(1.85) = 3.7in 4 Adding the weight of the channels, 2(5)/12 = 0.833 lbf/in, y A =− wl 4 8EI − Fl 3 3EI =− 10.833(48 4 ) 8(30)(10 6 )(3.7) − 220(48 3 ) 3(30)(10 6 )(3.7) =−0.1378 in Ans. ␪ A a D C F B a E A shi20396_ch05.qxd 8/18/03 10:59 AM Page 112 Chapter 5 113 5-18 I = πd 4 /64 = π(2) 4 /64 = 0.7854 in 4 Tables A-9-5 and A-9-9 y =− F 2 l 3 48EI + F 1 a 24EI (4a 2 − 3l 2 ) =− 120(40) 3 48(30)(10 6 )(0.7854) + 80(10)(400 − 4800) 24(30)(10 6 )(0.7854) =−0.0130 in Ans. 5-19 (a) Useful relations k = F y = 48EI l 3 I = kl 3 48E = 2400(48) 3 48(30)10 6 = 0.1843 in 4 From I = bh 3 /12 h = 3  12(0.1843) b Form a table. First, Table A-17 gives likely available fractional sizes for b: 8 1 2 , 9, 9 1 2 , 10 in For h: 1 2 , 9 16 , 5 8 , 11 16 , 3 4 For available b what is necessary h for required I? (b) I = 9(0.625) 3 /12 = 0.1831 in 4 k = 48EI l 3 = 48(30)(10 6 )(0.1831) 48 3 = 2384 lbf/in F = 4σ I cl = 4(90 000)(0.1831) (0.625/2)(48) = 4394 lbf y = F k = 4394 2384 = 1.84 in Ans. choose 9" × 5 8 " Ans. b 3  12(0.1843) b 8.5 0.638 9.0 0.626 ← 9.5 0.615 10.0 0.605 shi20396_ch05.qxd 8/18/03 10:59 AM Page 113 114 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 5-20 Torque = (600 −80)(9/2) = 2340 lbf · in (T 2 − T 1 ) 12 2 = T 2 (1 − 0.125)(6) = 2340 T 2 = 2340 6(0.875) = 446 lbf, T 1 = 0.125(446) = 56 lbf  M 0 = 12(680) − 33(502) + 48R 2 = 0 R 2 = 33(502) − 12(680) 48 = 175 lbf R 1 = 680 − 502 + 175 = 353 lbf We will treat this as two separate problems and then sum the results. First, consider the 680 lbf load as acting alone. z OA =− Fbx 6EIl (x 2 + b 2 −l 2 ); here b = 36 ", x = 12 ", l = 48 ", F = 680 lbf Also, I = πd 4 64 = π(1.5) 4 64 = 0.2485 in 4 z A =− 680(36)(12)(144 + 1296 − 2304) 6(30)(10 6 )(0.2485)(48) =+0.1182 in z AC =− Fa(l − x) 6EIl (x 2 + a 2 − 2lx) where a = 12 " and x = 21 + 12 = 33 " z B =− 680(12)(15)(1089 + 144 − 3168) 6(30)(10 6 )(0.2485)(48) =+0.1103 in Next, consider the 502 lbf load as acting alone. 680 lbf A C B O R 1 ϭ 510 lbf R 2 ϭ 170 lbf 12" 21" 15" z x R 2 ϭ 175 lbf680 lbf AC BO R 1 ϭ 353 lbf 502 lbf 12" 21" 15" z x shi20396_ch05.qxd 8/18/03 10:59 AM Page 114 Chapter 5 115 z OB = Fbx 6EIl (x 2 + b 2 −l 2 ), where b = 15 " , x = 12 ", l = 48 ", I = 0.2485 in 4 Then, z A = 502(15)(12)(144 + 225 − 2304) 6(30)(10 6 )(0.2485)(48) =−0.081 44 in For z B use x = 33 " z B = 502(15)(33)(1089 +225 −2304) 6(30)(10 6 )(0.2485)(48) =−0.1146 in Therefore, by superposition z A =+0.1182 −0.0814 =+0.0368 in Ans. z B =+0.1103 −0.1146 =−0.0043 in Ans. 5-21 (a) Calculate torques and moment of inertia T = (400 −50)(16/2) = 2800 lbf ·in (8T 2 − T 2 )(10/2) = 2800 ⇒ T 2 = 80 lbf, T 1 = 8(80) = 640 lbf I = π 64 (1.25 4 ) = 0.1198 in 4 Due to 720 lbf, flip beam A-9-6 such that y AB → b = 9, x = 0, l = 20, F =−720 lbf θ B = dy dx     x=0 =− Fb 6EIl (3x 2 + b 2 −l 2 ) =− −720(9) 6(30)(10 6 )(0.1198)(20) (0 + 81 −400) =−4.793(10 −3 ) rad y C =−12θ B =−0.057 52 in Due to 450 lbf, use beam A-9-10, y C =− Fa 2 3EI (l +a) =− 450(144)(32) 3(30)(10 6 )(0.1198) =−0.1923 in 450 lbf720 lbf 9" 11" 12" O y A B C R O R B A CB O R 1 R 2 12" 502 lbf 21" 15" z x shi20396_ch05.qxd 8/18/03 10:59 AM Page 115 [...]... 200(43 ) 1 .56 6(1 05 ) 2 − − = E I1 I2 2 =− 30(106 ) 1.28(104 ) 1 .56 6(1 05 ) + 0.24 85 0.7 854 = −0.016 73 in Ans −x ∂M = ∂Q 2 [1200x − 100(x − 4)2 ] − x dx 2 shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 129 129 Chapter 5 5-49 O x 3 Fa 5 l A O 4 Fa 5 l 4 F 5 A A 3 F 5 a a 3 F 5 B B 3 F 5 x 4 F 5 4 F 5 AB ∂M =x ∂F M = Fx N= 3 F 5 ∂N 3 = ∂F 5 T = 4 Fa 5 ∂T 4 = a ∂F 5 M1 = 4 Fx ¯ 5 ∂ M1 4 = x ¯ ∂F 5 M2 = 3 Fa 5 ∂ M2... 6 6 3 B: x = 0 .5 m, y B = −6.70(10−4 ) m = −0.670 mm Ans C: x = 1 m, yC = 38 85 3 1 15 830 − (1 ) + (1 − 0 .5) 3 − 62.0 45( 1) 3) 167.2(10 6 6 = −2.27(10−3 ) m = −2.27 mm Ans D: x = 1 .5, 38 85 1 15 830 − (1 .53 ) + (1 .5 − 0 .5) 3 3) 167.2(10 6 6 10 − (103 )(1 .5 − 1) 3 − 62.0 45( 1 .5) 3 = −3.39(10−4 ) m = −0.339 mm Ans yD = shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 1 35 1 35 Chapter 5 5-60 y FBE 50 0 lbf 3" A 3"... ∂F 5 OA δB = 1 ∂u = ∂F EI + = I = δB = = l 0 Fl AE J = 2I, 64Fa 3 9 + 4 3Eπd 25 (3 /5) F(3 /5) l (4 /5) Fa(4a /5) l + AE JG F x(x) dx + 0 1 EI 9 Fa 3 + 3E I 25 π 4 d , 64 a 4 Fx ¯ 5 + 16 25 A= 4Fl πd 2 E 4 1 x dx + ¯ ¯ 5 EI Fa 2l JG + l 0 3 3 Fa a dx ¯ 5 5 Fl 3 EI 16 75 + 9 25 Fa 2l EI π 2 d 4 + 16 25 32Fa 2l πd 4 G + 16 75 64Fl 3 Eπd 4 E 4F 400a 3 + 27ld 2 + 384a 2l + 256 l 3 + 432a 2l 4 75 Ed G + 9 25 Ans... 3(π/4)(0.0801) 2 σs = 65. 36 = 21 300 psi = 21.3 kpsi Ans (π/4)(0.06 252 ) 5- 51 σb = 0.9( 85) = 76 .5 kpsi Ans (a) Bolt stress Bolt force Cylinder stress σc = − π 4 Fb = 6(76 .5) (0.3 752 ) = 50 .69 kips Fb 50 .69 = − 15. 19 kpsi Ans =− Ac (π/4)(4 .52 − 42 ) (b) Force from pressure P= π D2 π(42 ) p= (600) = 754 0 lbf = 7 .54 kip 4 4 50 .69 Ϫ Pc 50 .69 ϩ Pb 6 bolts Fx = 0 x Pb + Pc = 7 .54 (1) P ϭ 7 .54 kip Pb L Pc L =... 0.0044 = −0.0 45 87 in Ans shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 121 121 Chapter 5 5-31 (0.1F)(1 .5) TL = = 9.292(10−4 ) F JG (π/32)(0.0124 )(79.3)(109 ) θ= Due to twist δ B 1 = 0.1(θ) = 9.292(10 5 ) F Due to bending F(0.13 ) F L3 = = 1 .58 2(10−6 ) F 3E I 3(207)(109 )(π/64)(0.0124 ) δB2 = δ B = 1 .58 2(10−6 ) F + 9.292(10 5 ) F = 9. 450 (10 5 ) F 1 = 10 .58 (103 ) N/m = 10 .58 kN/m Ans 9. 450 (10 5 ) k= 5- 32 F A... )(0.1667)(−1.4668)(10−3 ) = −26.67(63 ) + C1 (6) C1 = 55 2 .58 lbf · in2 yB = 1 [−26.67(183 ) + 40(18 − 6) 3 + 55 2 .58 (18)] 6 )(0.1667) 10(10 = −0.0 45 87 in 5- 41 I1 = R1 = Ans π (1 .54 ) = 0.24 85 in4 64 200 (12) = 1200 lbf 2 For 0 ≤ x ≤ 16 in, M = 1200x − I2 = π 4 (2 ) = 0.7 854 in4 64 MրI 200 x −4 2 2 x shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 1 25 1 25 Chapter 5 1200x M = − 4800 I I1 1 1 − I1 I2 x − 4 0 − 1200... Mechanical Engineering Design σB E = 10 45. 2 = 13 627 psi = 13.6 kpsi Ans (π/4) (5/ 16) 2 σD F = − 45. 2 = 58 9 psi Ans (π/4) (5/ 16) 2 yA = 1 (−11 52 2) = −0.007 68 in Ans 1 .5( 106 ) yB = 250 3 1 − (3 ) + 4136.4(3) − 11 52 2 = −0.000 909 in Ans 1 .5( 106 ) 3 yD = 250 3 1 10 45. 2 59 0.4 − (9 ) + (9 − 3) 3 + (9 − 6) 3 + 4136.4(9) − 11 52 2 6) 1 .5( 10 3 6 6 = −4.93(10 5 ) in Ans 5- 61 ␪ F Q (dummy load) ∂M = R(1 − cos... /∂ F)L dx + ∂F JG −F x(−x) d x + ¯ ¯ ¯ 0 0.1F(0.1)(1 .5) JG 0.015F F (0.13 ) + 3E I JG Where π (0.012) 4 = 1.0179(10−9 ) m4 64 J = 2I = 2.0 358 (10−9 ) m4 I = δB = F k= 5- 48 0.001 3(207)(109 )(1.0179)(10−9 ) + 0.0 15 = 9. 45( 10 5 ) F −9 )(79.3)(109 ) 2.0 358 (10 1 = 10 .58 (103 ) N/m = 10 .58 kN/m Ans 9. 45( 10 5 ) From Prob 5- 41, I1 = 0.24 85 in4 , I2 = 0.7 854 in4 For a dummy load ↑ Q at the center 200 Q x − 4... τ1 = 3 πd π(7/8)3 τ2 = 16(969.4) = 252 8 psi Ans π(1. 25) 3 5- 56 10 kip 5 kip FA RO FB x RC (1) Arbitrarily, choose RC as redundant reaction Fx = 0, (2) 10(103 ) − 5( 103 ) − R O − RC = 0 R O + RC = 5( 103 ) lbf (3) δC = RC ( 15) [10(103 ) − 5( 103 ) − RC ]20 [5( 103 ) + RC ] − (10) − =0 AE AE AE −45RC + 5( 104 ) = 0 ⇒ RC = 1111 lbf Ans R O = 50 00 − 1111 = 3889 lbf Ans 5- 57 w A MC B a C RC RB l x (1) Choose... dθ = = 5- 67 π P R3 π2 2E I 2π 2 (3π 2 − 8π − 4) P R 3 8π EI π 4 + π2 +4 π 4 − 2π 2 − 4π + 2π Ans Must use Eq (5- 34) A = 80(60) − 40(60) = 2400 mm2 R= ( 25 + 40)(80)(60) − ( 25 + 20 + 30)(40)(60) = 55 mm 2400 Section is equivalent to the “T” section of Table 4 -5 rn = 60(20) + 20(60) = 45. 9 654 mm 60 ln[( 25 + 20)/ 25] + 20 ln[(80 + 25) /( 25 + 20)] e = R − rn = 9.0 35 mm Straight section y z Iz = 30 mm 50 mm . 15& quot; z x R 2 ϭ 1 75 lbf680 lbf AC BO R 1 ϭ 353 lbf 50 2 lbf 12" 21" 15& quot; z x shi20396_ ch 05. qxd 8/18/03 10 :59 AM Page 114 Chapter 5 1 15 z OB = Fbx 6EIl (x 2 +. C 1 (6) C 1 = 55 2 .58 lbf ·in 2 y B = 1 10(10 6 )(0.1667) [−26.67(18 3 ) + 40(18 − 6) 3 + 55 2 .58 (18)] =−0.0 45 87 in Ans. 5- 41 I 1 = π 64 (1 .5 4 ) = 0.24 85 in 4 I 2 = π 64 (2 4 )

Ngày đăng: 22/01/2014, 15:20

TỪ KHÓA LIÊN QUAN

w