Tài liệu tham khảo đồ án tốt nghiệp Thiế kết - thi công mạch điều khiển nhiệt độ
Trang 1BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC DÂN LẬP KỸ THUẬT CÔNG NGHỆ KHOA : ĐIỆN TỬ – VIỄN THÔNG
ĐỒ ÁN MÔN HỌC ĐỀ TÀI :
THIẾT KẾ-THI CÔNG MẠCH ĐIỀU KHIỂN NHIỆT ĐỘ
Sinh viên thực hiện : Nguyễn Quang Hiếu Lớp : 97ĐT04
MSSV 97ĐT890
Trang 2LỜI NÓI ĐẦU
Kỹ thuật vi sử lý hiện nay rất phát triển , nó được ứng dụng vào rất nhiều lĩnh vực như sản xuất công nghiệp ,tự động hoá và còn nhiều lĩnh vực khác nữa So với kỹ thuậtsố thì kỹ thuật vi sử lý nhỏ gọn hơn rất nhiều do nó được tích hợp lại và được lập trình để điều khiển
Với tính ưu việt của vi xử lý thì trong phạm vi đồ án nhỏ này em chỉ tiến hành việc dùng vi xử lý để đo và điều khiển nhiệt độ , đây chỉ là một ứng dụng nhỏ của vi xử lý trong các ứng dụng của nó
Những kiến thức học được cộng thêm hiểu biết từ các tài liệu tham khảo , tuy có thể hoàn thành cuốn đồ án này nhưng không thể tránh khỏi nhiều thiếu sót mong thầy giáo khi xem cuốn đồ án này có thể thông cảm
Để hoàn thành cuốn đồ án này em đã nhận được sự chỉ bảo tận tình của thầy giáo hướng dẫn và sự giúp đỡ nhiệt tình của bạn bè Cuối cùng em xin cảm ơn thầy hướng dẫn Phạm Hùng Kim Khánh ,thầy giáo môn vi xử lý và các thầy cô giáo đã dạy cho em những kiến thức cơ bản để em có thể hoàn thành cuốn đồ án này
Sinh viên thực hiện Nguyễn Quang Hiếu
Trang 3PHẦN A : CƠ SỞ LÝ THUYẾT
Trong các thiếh bị điện và điện và điện tử dân dụng, các bộ vi điều khiển, điều khiển hoạt động của TV, máy giặt, đầu đọc laser, điện thọai, lò vi-ba … Trong hệ thống sản xuất tự động, bộ vi điều khiển được sử dụng trong Robot, dây chuyền tự động Các hệ thống càng “thông minh” thì vai trò của hệ vi điều khiển càng quan trọng
II.KHẢO SÁT BỘ VI ĐIỀU KHIỂN 8051 VÀ 8031:
IC vi điều khiển 8051/8031 thuộc họ MCS51 có các đặt điểm sau : - 4kbyte ROM (được lập trình bởi nhà sản xuất chỉ có ở 8051) - 128 búyt RAM
- 4port I/0 8bit
- Hai bộ định thời 16bit - Giao tiếp nối tiếp
- 64KB không gian bộ nhớ chương trình mở rộng - 64 KB không gian bộ nhớ dữ liệu mở rộng - một bộ xử lí luận lí (thao tác trên các bit đơn) - 210 bit được địa chỉ hóa
- bộ nhân / chia 4µs
Trang 41.CẤU TRÚC BÊN TRONG CỦA 8051 / 8031 :
Hình 2.1 : Sơ Đồ Khối 8051 / 8031
TXD* RXD*
P0 P1 P2 P3 INT\*1
INT\*0 TIMER2 TIMER1 PORT nối tiềp
EA\ RST PSEN ALE Các ùthanh ghikhác
128 byte Ram
Rom 4K-8051 OK-8031
Timer1 Timer2 Điều
khiển ngắt
Điều khiển bus
CPU
Port nối tiếp Các port
I\OTạo
dao
Trang 5Phần chính của vi điều khiển 8051 / 8031 là bộ xử lí trung tâm (CPU: central processing unit ) bao gồm :
- Thanh ghi tích lũy A
- Thanh ghi tích lũy phụ B, dùng cho phép nhân và phép chia - Đơn vị logic học (ALU : Arithmetic Logical Unit )
- Từ trạng thái chương trình (PSW : Prorgam Status Word) - Bốn băng thanh ghi
- Con trỏ ngăn xếp
- Ngoài ra còn có bộ nhớ chương trình, bộ giải mã lệnh, bộ điều khiển thời gian và logic
Đơn vị xử lí trung tâm nhận trực tiếp xung từ bộ giao động, ngoài ra còn có khả năng đưa một tín hiệu giữ nhịp từ bên ngoài
Chương trình đang chạy có thể cho dừng lại nhờ một khối điều khiển ngắt ở bên trong Các nguồn ngắt có thể là : các biến cố ở bên ngoài , sự tràn bộ đếm định thời hoặc cũng có thể là giao diện nối tiếp
Hai bộ định thời 16 bit hoạt động như một bộ đếm
Các cổng (port0, port1, port2, port3 ) Sử dụng vào mục đích điều khiển Ơû cổng 3 có thêm các đường dẫn điều khiển dùng để trao đổi với một bộ nhớ bên ngoài, hoặc để đầu nối giao diện nối tiếp, cũng như các đường ngắt dẫn bên ngoài
Giao diện nối tiếp có chứa một bộ truyền và một bộ nhận không đồng bộ, làm việc độc lập với nhau Tốc độ truyền qu ổng nối tiếp có thể đặt trong vảy rộng và được ấn định bằng một bộ định thời
Trong vi điều khiển 8051 / 8031 có hai thành phần quan trọng khác đó là bộ nhớ và các thanh ghi :
Bộ nhớ gồm có bộ nhớ Ram và bộ nhớ Rom (chỉ có ở 8031) dùng để lưu trữ dữ liệu và mã lệnh
Các thanh ghi sử dụng để lưu trữ thông tin trong quá trình xử lí Khi CPU làm việc nó làm thay đổi nội dung củ ác thanh ghi
Trang 62.CHỨC NĂNG CÁC CHÂN VI ĐIỀU KHIỂN :
Hình 2.2 : Sơ Đồ Chân 8051
18 19 12MHz
29 3031 917 16 15 14 13 12 11 10 RD\
WR\ T1 T0 INT1 INT0 TXD RXD
A15 A14 A13 A12 A11 A10 A9 A828
27 26 25 24 23 22 21
8 7 6 5 4 3 2 1 32 33 34 35 36 37 38 39 Po.7
Po.6 Po.5 Po.4 Po.3 Po.2 Po.1 Po.0
AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 PSEN\
ALE EA\ RET
20Vss30p
30p
XTAL1XTAL2
Trang 7a.port0 : là port có 2 chức năng ở trên chân từ 32 đến 39 trong các thiết kế
cỡ nhỏ
( không dùng bộ nhớ mở rộng ) có hai chức năng như các đường I/O Đối với các thiết kế cỡ lớn ( với bộ nhớ mở rộng ) nó được kết hợp kênh giữ a các bus)
b.port1 : port1 là một port I/O trên các chân 1-8 Các chân được ký hiệu
P1.0, P1.1, P1.2 … có thể dùng cho các thiết bị ngoài nếu cần Port1 không có chức năng khác, vì vậy chúng ta chỉ được dùng trong giao tiếp với các thiết bị ngoài
c.port2 : port2 là một port công dụng kép trên các chân 21 – 28 được dùng
như các đường xuất nhập hoặc là byte cao của bus địa chỉ đối với các thiết kế dùng bộ nhớ mở rộng
d.Port3 : port3 là một port công dụng kép trên các chân 10 – 17 Các chân
của port này có nhiều chức năng, các công dụng chuyển đổi có liên hệ với các đặc tín đặc biệt của 8051 / 8031 như ở bảng sau :
Bit Tên Chức năng chuyển đổi
P3.0 RXD Dữ liệu nhận cho port nối tiếp P3.1 TXD Dữ liệu phát cho port nối tiếp P3.2 INTO Ngắt 0 bên ngoài P3.3 INT1 Ngắt 1 bên ngoài P3.4 TO Ngõ vào của timer/counter 0 P3.5 T1 Ngõ vào của timer/counter 1 P3.6 WR Xung ghi bộ nhớ dữ liệu ngoài
P3.7 RD Xung đọc bộ nhớ dữ liệu ngoài
Bảng 2.1 : Chức năng của các chân trên port3
e.PSEN (Program Store Enable ) : 8051 / 8031 có 4 tín hiệu điều khiển
Trang 8PSEN là tín hiệu ra trên chân 29 Nó là tín hiệu điều khiển để cho phép bộ nhớ chương trình mở rộng và thường được nối đến chân OE (Output Enable) của một EPROM để cho phép đọc các bytes mã lệnh
PSEN sẽ ở mức thấp trong thời gian lấy lệnh Các mã nhị phân của chương trình được đọc từ EPROM qua bus và được chốt vào thanh ghi lệnh của 8051 để giải mã lệnh Khi thi hành chương trình trong ROM nội (8051) PSEN sẽ ở mức thụ động (mức cao)
f.ALE (Address Latch Enable ) :
tín hiệu ra ALE trên chân 30 tương hợp với các thiết bị làm việc với các xử lí 8585, 8088, 8086, 8051 dùng ALE một cách tương tự cho làm việc giải các kênh các bus địa chỉ và dữ liệu khi port 0 được dùng trong chế độ chuyển đổi của nó : vừa là bus dữ liệu vừa là búyt thấp của địa chỉ, ALE là tín hiệu để chốt địa chỉ vào một thanh ghi bên ngoài trong nữa đầu của chu kỳ bộ nhớ Sau đó, các đường port 0 dùng để xuất hoặc nhập dữ liệu trong nữa sau chu kỳ của bộ nhớ
Các xung tín hiệu ALE có tốc độ bằng 1/6 lần tần số dao động trên chip và có thể được dùng là nguồn xung nhịp cho các hệ thống Nếu xung trên 8051 là 12MHz thì ALE có tần số 2MHz Chỉ ngoại trừ khi thi hành lệnh MOVX, một xung ALE sẽ bị mất Chân này cũng được làm ngõ vào cho xung lập trình cho EPROM trong 8051
g.EA (External Access) :
Tín hiệu vào EA trên chân 31 thường được mắc lên mức cao (+5V) hoặc mức thấp (GND) Nếu ở mức cao, 8051 thi hành chương trình từ ROM nội trong khoảng địa chỉ thấp (4K) Nếu ở mức thấp, chương trình chỉ được thi hành từ bộ nhớ mở rộng Khi dùng 8031, EA luôn được nối mức thấp vì không có bộ nhớ chương trình trên chip Nếu EA được nối mức thấp bộ nhớ bên trong chương trình 8051 sẽ bị cấm và chương trình thi hành từ EPROM mở rộng Người ta còn dùng chân EA làm chân cấp điện áp 21V khi lập trình cho EPROM trong 8051
h.SRT (Reset) :
Ngõ vào RST trên chân 9 là ngõ reset của 8051 Khi tín hiệu này được đưa lên múc cao (trong ít nhất 2 chu kỳ máy ), các thanh ghi trong 8051 được tải những giá trị thích hợp để khởi động hệ thống
i.Các ngõ vào bộ dao động trên chip :
Như đã thấy trong các hình trên , 8051 có một bộ dao động trên chip Nó thường được nối với thạch anh giữa hai chân 18 và 19 Các tụ giữa cũng cần thiết như đã vẽ Tần số thạch anh thông thường là 12MHz
Trang 9j.Các chân nguồn :
8051 vận hành với nguồn đơn +5V Vcc được nối vào chân 40 và Vss
(GND) được nối vào chân 20
3_ Các thanh ghi đặc biệt :
a Các thanh ghi port xuất nhập:
Các port của 8051/8031 bao gồm Port 0 ở địa chỉ 80H, Port 1 ở địa chỉ 90 H, Port 2 ở địa chỉ A0H và Port 3 ở địa chỉ B0H Tất cả các Port đều được địa chỉ hóa từng bit Điều đó cung cấp một khả năng giao tiếp thuận lợi
b Các thanh ghi timer:
8051/8031 chứa 2 bộ định thời đếm 16 bit được dùng trong việc định thời hoặc đếm sự kiện Timer 0 ở địa chỉ 8AH (TL0:byte thấp) và 8CH (TH0:byte cao).Timer 1 ở địa chỉ 8BH (TL1:byte thấp) và 8DH (TH1: byte cao) việc vận hành timer được set bởi thanh ghi Timer Mode (TMOD) ở địa chỉ 89H và thanh ghi điều khiển timer (TCON) ở địa chỉ 88H Chỉ có TCON được địa chỉ hóa từng bit
c Các thanh ghi port nối tiếp:
8051/8031 chức một port nối tiếp trên chip dành cho việc trao đổi thông tin với các thiết bị nối tiếp như máy tính, modem hoặc cho việc giao tiếp với các IC khác có giao tiếp nối tiếp (có bộ chuyển đổi A/D, các thanh ghi dịch ) Một thanh ghi gọi là bộ đệm dữ liệu nối tiếp (SBUF) ở địa chỉ 99H ssẽ giữ cả hai giữ liệu truyền và nhận Khi truyền dữ liệu thì ghi lên SBUf, khi nhận dữ liệu thì đọc SBUF Các mode vận hành khác nhau được lập trình qua thanh ghi điều khiển port nối tiếp (SCON) (được địa chỉ hóa từng bit) ở địa chỉ 98H
d Các thanh ghi ngắt:
8051/8031 có cấu trúc 5 nguồn ngắt, 2 mức ưu tiên Các ngắt bị cấm sau khi reset hệ thống và sẽ được cho phép bằng việc ghi thanh ghi cho phép ngắt (IE) ở địa chỉ 8AH Cả hai thanh ghi được địa chỉ hóa từng bit
e Các thanh ghi điều khiển công suất:
Thanh ghi điều khiển công suất (PCON) ở địa chỉ 87H chứa nhiều bit điều khiển
Trang 104/ Lệnh reset
8051/8031 được reset bằng cách giữ chân RST ở mức cao ít nhất trong 2 chu kỳ máy và trả nó về múc thấp RST có thể được kích khi cấp điện dùng một mạch R-C
Hình 2.9: Mạch reset hệ thống
Trạng thái của tất cả các thanh ghi của 8051/8031 sau khi reset hệ thống được tóm tắt trong bảng sau:
Thanh ghi Nội dung Đếm chương trình
Tích lũy B PSW
SP DPTR Port 0-3
IP IE
Các thanh ghi định thời SCON
0000H 00H 00H 00H 07H 0000H
FFH XXX00000B
0XX00000B 00H 00H
8,2K10UF
Trang 11SBUF PCON(HMOS) PCON(CMOS)
00H 0XXXXXXB 0XXX0000B
Bảng 2.3: Trạng thái các thanh ghi sau khi reset
Quan trọng nhất trong các thanh ghi trên là thanh ghi đếm chương trình, nó được đặt lại 0000H Khi RST trở lại mức thấp, việc thi hành chương trình luôn bắt đầu ở địa chỉ đầu tiên trong bộ nhớ trong chương trình: địa chỉ 0000H Nội dung của RAM trên chip không bị thay đổi bởi lệnh reset
5 Hoạt động của bộ định thời (timer) 5.1 Giới thiệu
Một định nghĩa đơn giản của timer là một chuỗi các flip-flop chia đôi tần số nối tiếp với nhau, chúng nhận tín hiệu vào làm nguồn xung nhịp Ngõ ra của tần số cuối làm nguồn xung nhịp cho flip-flop báo tràn của timer (flip-flop cờ) Giá trị nhị phân trong các flip-flop của timer có thể xem như số đếm số xung nhịp (hoặc các sự kiện) từ khi khởi động timer Ví dụ timer 16 bit sẽ đếm lên từ 0000H đến FFFFH Cờ báo tràn sẽ lên 1 khi số đếm tràn từ FFFFH đến 0000H 8051/8031 có 2 timer 16 bit, mỗi timer có bốn cách làm việc Người ta sử dụng các timer để : a) định khoảng thời gian, b) đếm sự kiện hoặc c) tạo tốc độ baud cho port nối tiếp trong 8051/8031
Trong các ứng dụng định khoảng thời gian, người ta lập trình timer ở một khoảng đều đặn và đặt cờ tràn timer Cờ được dùng để đồng bộ hóa chương trình để thực hiện một tác động như kiểm tra trạng thái của các cửa ngõ vào hoặc gửi các sự kiện ra các ngõ ra Các ứng dụng khác có thể sử dụng việc tạo xung nhịp đều đặn của timer để đo thời gian trôi qua giữa hai sự kiện (ví dụ : đo độ rộng xung)
Đếm sự kiện dùng để xác định số lần xẩy ra của một sự kiện Một “sự kiện” là bất cứ tác động ngoài nào có thể cung cấp một chuyển trạng thái trên một chân của 8051/8031 Các timer cũng có thể cung cấp xung nhịp tốc độ baud cho port nối tiếp trong 8051/8031
Trang 12Truy xuất timer của 8051/8031 dùng 6 thanh ghi chức năng đặc biệt cho trong bảng sau:
Điều khiển timer Chế độ timer
Byte thấp của timer 0 Byte thấp của timer 1 Byte cao của timer 0 Byte cao của timer 1
88H 89H 8AH 8BH 8CH 8DH
Có Không Không Không Không Không
Bảng 2.4: Thanh ghi chức năng đặc biệt dùng timer
5.2 Thanh ghi chế độ timer (TMOD)
Thanh ghi TMOD chứa hai nhóm 4 bit dùng để đặt chế độ làm việc cho timer 0 và timer 1
Bit Tên Timer Mô tả
7 GATE 1 Bit (Mở) cổng, khi lên 1 timer chỉ chạy khi INT1 ở mức cao
6 C/T 1 Bit chọn chế độ counter/timer 1=bộ đếm sự kiện
0=bộ định khoảng thời gian 5 M1 1 Bit 1 của chế độ(mode) 4 M0 1 Bit 0 của chế độ
00: chế độ 0 : timer 13 bit
Trang 1301: chế độ 1 : timer 16 bit
10: chế độ 2 : tự động nạp lại 8255A bit 11: chế độ 3 : tách timer
3 GATE 0 Bit (mở) cổng
2 C/T 0 Bit chọn counter/timer 1 M1 0 Bit 1 của chế độ 0 M0 0 Bit 0 của chế độ
Bảng 2.5: Tóm tắt thanh ghi TMOD
5.3 Thanh ghi điều khiển timer (TCON)
Thanh ghi TCON chứa các bit trạng thái và các bit điều khiển cho timer 0 và timer 1
Bit Ký hiệu Địa chỉ Mô tả
TCON.7 TF1 8FH Cờ báo tràn timer 1 Đặt bởi phần cứng khi tràn, được xóa bởi phần mềm hoặc phần cứng khi bộ xử lý
chỉ đến chương trình phục vụ ngắt
TCON.6 TR1 8EH Bit điều khiển timer 1 chạy Đặt/xóa bằng phần mềm cho timer chạy/ngưng TCON.5 TF0 8DH Cờ báo tràn timer 0
Trang 14TCON.4 TR0 8CH Bit điều khiển timer 0 chạy
TCON.3 IE1 8BH Cờ cạnh ngắt 1 bên ngoài, đặc bởi TCON.2 IT1 8AH Cờ kiểu ngắt một bên ngoài
phần cứng khi phát hiện một cạnh xuống ở INT1, xóa bằng phần mềm hoặc phần cứng khi CPU chỉ đến chương trình phục vụ ngắt
Đặt/xóa bằng phần mềm đề ngắt ngoài tích cực cạnh xuống/mức thấp TCON.1 IE0 89H Cờ cạnh ngắt 0 bên ngoài
TCON.0 IT0 88H Cờ kiểu ngắt 0 bên ngoài
Bảng 2.6: Tóm tắt thanh ghi TCON
5 4 Các chế độ timer
a) Chế độ 0, chế độ timer 13 bit
Để tương thích với 8048 (có trứớc 8051)
Ba bit cao của TLX (TL0 và/hoăc TL1) không dùng Xung nhịp
timer
Cờ báo tràn
b) Chế độ 1- chế độ timer 16 bit
Hoạt động như timer 16 bit đầy đủ
Cờ báo tràn là bit TFx trong TCON có thể đọc hoặc ghi bằng phầm mềm
MSB của giá trị trong các thanh ghi timer là bit 7 của THx và LBS là bit 0 của TLx Các thanh ghi timer (Tlx/THx) có thể được đọc hoặc ghi bất cứ lúc nào bằng phầm mềm
Xung nhịp timer
Cờ báo tràn TLx THx
(5 bit) (8 bit) TFx
TLx THx
(5 bit) (8 bit) TFx
Trang 15c) Chế độ 0- chế độ tự động nạp lại 8 bit
TLx hoạt động như một timer 8 bit, trong khi đó THx vẫn giữ nguyên giá trị được nạp Khi số đếm tràn tứ FFH đến 00H, không những cờ timer được set mà giá trị trong THx đồng thời được nạp vào TLx Việc đếm tiếp tục từ giá trị này lên đến FFH xuống 00H và nạp lại chế độ này rất thông dụng vì sự tràn timer xảy ra trong những khoảng thời gian nhất định và tuần hoàn một khi đã khởi động TMOD và THx
Xung nhịp timer
Nạp lại
d) Chế độ 3- chế độ tách timer
Timer 0 tách thành hai timer 8 bit (TL0 và TH0), TL0 có cờ báo tràn là TF0 và TH0 có cờ báo tràn là TF1
Timer 1 ngưng ở chế độ 3, nhưng có thể được khởi động bằng cách chuyển sang chế độ khác Giới hạn duy nhất là cờ báo tràn TF1 không còn bị tác động khi timer 1 bị tràn vì nó đã được nối tới TH0
Khi timer 0 ở chế độ 3, có thể cho timer 1 chạy và ngưng bằng cách chuyển nó ra ngoài và vào chế độ 3 Nó vẫn có thể được sử dụng bởi port nối tiếp như bộ tạo tốc độ baund hoặc nó có thể được sử dụng bằng bất cứ cách nào không cần ngắt (vì nó không còn được nối với TF1)
Xung nhịp Timer Xung nhịp Timer
TLx
THx (8 bit)
TL1 TH1
Trang 16Cờ báo tràn I/12 Fosc
Cờ báo tràn
5.5 Nguồn tạo xung nhịp
Có hai nguồn tạo xung nhịp có thể có, đượ chọn bằng cách ghi vào bit C/T (counter/timer) trong TMOD khi khởi động timer Một nguồn tạo xung nhịp dùng cho định khoảng thời gian, cái khác cho đếm sự kiện
Timer Clock T0 or T1
pin
0=Up (Internal Timing)
Nguồn xung tạo nhịp
- Định khoảng thời gian (interval timing)
Nếu C/T =0 hoạ t động timer liên tục được chọn và timer được dùng cho việc định khoảng thời gian Lúc đó, timer lấy xung nhịp từ bộ dao động trên chip Bộ chia 12 được thêm vào để giảm tần số xung nhịp đến giá trị thích hợp cho phần lớn các ứng dụng Như vậy thạch anh 12 MHz sẽ cho tốc độ xung nhịp timer 1 MHz Bóa tràn timer xảy ra sau một số (cố địng) xung nhịp, phụ thuộc vào giá trị ban đầu được nạp vào các thanh ghi timer TLx/THx
- Đếm sự kiện (Event counting)
- Nếu C/T=1, timer lấy xung nhịp từ nguồn bên ngoài Trong hầu hết các ứng dụng nguồn bên ngoài này cung cấp cho timer một xung kh xảy ra một “sự kiện “, timer dùng đếm sự kiện được xác định bằng phần mềm bằng cách đọc các thanh ghi TLx/THx vì giá trị 16 bit trong các thanh ghi này tăng thêm 1 cho mỗi sự kiện
On chip Osillato
TC /
Trang 17Nguồn xung nhịp ngoài có từ thay đổi chú7c năng của các chân port 3 Bit 4 của port 3 (P3.4) dùng làm ngõ vào tạo xung nhịp bên trong timer 0 và được gọi là “T0” Và p3.5 hay “T1” là ngõ vào tạo xung nhịp cho timer 1
5.6 Bắt đầu dừng và điều khiển các timer
Phương pháp mới đơn giản nhất để bắt đầu (cho chạy) và dừng các timer là dùng các bit điều khiển chạy :TRx trong TCON, TRx bị xóa sau khi reset hệ thống Như vậy, các timer theo mặc nhiên là bị cấm (bị dừng) TRx được đặt lên 1 bằng phần mềm để cho các timer chạy
Cho chạy và dừng timer
Vì TRx ở trong thanh ghi TCON có địa chỉ bit, nên dễ dàng cho việc điều khiển các timer trong chương trình Ví dụ : cho timer 0 chạy bằng lệnh : SETB
TR0 và dừng bằng lệnh SETB TR0
Trình biên dịch sẽ thực hiện việc chuyển đổi ký hiệu cần thiết từ “TR0” sang địa chỉ bit đúng SETB TR0 chính xác giống như SETB 8CH
5.7 Khởi động và truy xuất các thanh ghi timer
Thông thường các thanh ghi được khởi động một lần ở đầu chương trình để đặt chế độ làm việc cho đúng Sau đó trong thân chương trình các timer được cho chạy, dừng , các bit cờ được kiểm tra và xóa, các thanh ghi timer được đọc và cạp nhật theo đòi hỏi của các ứng dụng
TMOD là thanh ghi thứ nhất được khởi động vì nó đặt chế độ hoạt động
Ví dụ các lệnh sau khi khởi động timer 1 như timer 16 bit (chế độ 1) có xung nhịp từ bộ dao động trên chíp cho việc địng khoảng thời gian
MOV TMOD,#00010000B
Lệnh nàyy sẽ đặt M1=0 vả M0=1 cho chế độ 1, C/T=0 và GATE=0 cho
xung nhịp nội và xóa các bit chế độ timer 0 Dĩ nhiên timer thật sự không bắt
đầu định thời cho đến khi bit điều khiển chạyy TR1 được đặt lên 1
Nếu cần số đếm ban đầu, các thanh ghi timer TL1/TH1 cũng phải được khởi
động Nhớ lại là các timer đếm lên và đặt cờ báo tràn khi có sự truyển tiếp
FFFFH sang 0000H
- Đọc timer đang chạy TRx
Trang 18Trong một số ứng dụng cần đọc giá trị trong các thanh ghi timer đang chạy Vì phải đọc 2 thanh ghi timer “sai pha” có thể xẩy ra nếu byte thấp tràn vào byte cao giữa hai lần đọc Giá trị có thể đọc được không đúng Giải pháp là đọc byte cao trước, kế đó đọc byte thấp rồi đọc byte cao lại một lần nữa Nếu byte cao đã thay đổi thì lập lại các hoạt động đọc
5.8 Các khoảng ngắn và các khoảng dài
Dãy các khoảng thời gian có thể định thời là bao nhiêu ? vấn đề này được khảo sát với 8051/8031 hoạt động với tần số 12MHz như vậy xung nhịp của các timer có tần số lá 1 MHz
Khoảng thời gian ngắn nhất có thể có bị giới hạn không chỉ bởi tần số xung nhịp của timer mà còn bởi phần mềm Do ảnh hưởng của thời khoảng thực hiện một lệnh Lệng ngắn nhất 8051/8031 là một chu kỳ máy hay 1µs Sau đây là bảng tóm tắt các kỹ thuật để tạo những khoảng thời gian có chiều dài khác nhau (với giả sử xung nhịp cho 8051/8031 có tần số 12 MHz)
Khoảng thời gian tối đa Kỹ thuật ≈10 - Bằng phần mềm
256 - Timer 8 bit với tự động nạp lại 65535 - Timer 16 bit
Không giới hạn - Timer 16 bit cộng với các vòng
Các kỹ thuật để lập trình các khoảng thời gian (FOSC=12 MHz)
6 Hoạt động port nối tiếp 6.1 Giới thiệu
8051/8031 có một port nối tiếp trong chip có thể hoạt động ở nhiều chế độ khác trên một dãy tần số rộng Chức năng chủ yếu của một port nối tiếp là thực hiện chuyển đổi song song sang nối tiếp với dữ liệu xuất và chuyển đồi nối tiếp sang song song với dữ liệu nhập
Truy xuất phần cứng đến port nối tiếp qua các chân TXD và RXD Các chân này có các chức năng khác với hai bit của port 3 P3 ở chân 11 (TXD) và P3.0 ở chân 10 (RXD)
Port nối tiếp cho hoạt động song công (full duplex : thu và phát đồng thời) và đệm lúc thu (receiver buffering) cho phép một ký tự sẽ được thu và được giữ trong khi ký tự thứ hai được nhận Nếu CPU đọc ký tự thứ nhất trước khi ký tự thứ hai được thu đầy đủ thì dữ liệu sẽ không bị mất
Trang 19Hai thanh ghi chức năng đặc biệt cho phép phần mềm truy xuất đến port nối tiếp là : SBUF và SCON Bộ đếm port nối tiếp (SBUF) ở đại chỉ 99H thật sử là hai bộ đếm Viết vào SBUF để truy xuất dữ liệu thu được Đây là hai thanh ghi riêng biệt thanh ghi chỉ ghi để phát và thanh ghi để thu
TXD (P3.1) RXD (P3.0) CLK
Q D CLK Xung nhịp tốc Độ baud (thu) Xung nhịp tốc
Độ baud (thu)
Hình 2.9: Sơ đồ port nối tiếp
Thanh ghi điều khiển port nối tiếp (SCON) ở địa chỉ 98H là thanh ghi có địa chỉ bit chứa các bit trạng thái và các bit điều khiển Các bit điều khiển đặt chế độ hoạt động cho port nối tiếp, và các bit trạng thái báo cáo kết thúc việc phát hoặc thu ký tự Các bit trạng thái có thể được kiểm tra bằng phần mềm hoặc có thể được lập trình để tạo ngắt
Tần số làm việc của port nối tiếp còn gọi là tốc độ baund có thể cố định (lấy từ bộ giao động của chip) Nếu sử dụng tốc độ baud thay đổi, timer 1 sẽ cung cấp xung nhịp tốc độ baud và phải được lập trình
6.2 Thanh ghi điều khiển port nối tiếp
Chế độ hoạt động của port nối tiếp được đặt bằng cách ghi vào thanh ghi chế độ port nối tiếp (SCON) ở địa chỉ 98H Sau đây các bảng tóm tắt thanh ghi SCON và các chế độ của port nối tiếp :
SUBF
SBUF (chỉ đọc)
BUS nội 8051/8031
SBUF (chỉ đọc)
Trang 20Bit Ký hiệu Địa chỉ Mô tả
SCON.7 SM0 9FH Bit 0 của chế độ port nối tiếp SCON.6 SM1 9EH Bit 1 của chế độ port nối tiếp SCON.5 SM2 9DH Bit 2 của chế độ 2 nối tiếp
cho phép truền thông đã xử lý trong các chế độ 2 và 3 ;RI sẽ
SCON.4 REN 9CH Cho phép bộ thu phải đặt lên
SCON.3 TB8 9BH Bit 8 phát, bit thứ 9 được phát
SCON.2 RB8 9AH Bit 8 thu, bit thứ 9 thu được SCON.1 TI 99H Cờ ngắt phát Đặt lên 1 khi kết thúc phát ký tự; được xóa
SCON.0 RI 98H Cờ ngắt thu Đặt lên 1 khi
Bảng 2.7:Tóm tắt thanh ghi chế độ port nối tiếp SCON
SM0 SM1 Chế độ Mô tả Tốc độ baud 0 0 0 Thanh ghi dịch Cố định (Fosc/12)
0 1 1 UART 8 bit Thay đổi (đặt bằng timer) 1 0 2 UART 9 bit Cố định (Fosc/12 hoặc Fosc/64)
1 1 3 UART 9 bit Thay đổi (đặt bằng timer)
Bảng 2.8: Các chế độ port nối tiếp
Trước khi sử dụng port nối tiếp, phải khởi động SCON cho đúng chế độ Ví dụ ,lệnh sau:
Trang 21MOV SCON,#01010010B
Khởi động port nối tiếp cho chế độ 1 (SM0/SM1=0/1), cho phép bộ thu (REN=1) và đặt cờ ngắt phát (TP=1) để chỉ bộ phát sẵn sàng hoạt động
6.3 Khởi động và truy xuất các thanh ghi cổng nối tiếp
a Cho phép thu:
Bit cho phép bộ thu (REN = Receiver Enable) trong SCON phải được đặt lên 1 bằng phần mềm để cho phép thu các ký tự Thông thường thực hiện việc này ở đầu chương trình khi khởi động cổng nối tiếp, timer Có thể thực hiện việc này theo hai cách Lệnh :
c Thêm 1 bit parity:
Thường sử dụng bit dữ liệu thứ 9 để thêm parity vào ký tự Như đã xét ở các chương trước, pit P trong từ trạng thái chương trình (PSW) được đặt lên 1 hoặc bị xóa bởi chu kỳ máy để thiết lập kiểm tra chẵn với 8 bit trong thanh tích lũy
d Các cờ ngắt:
Hai cờ ngắt thu và phát (RI và TI) trong SCON đóng một vai trò quan trọng truyền thông nối tiếp dùng 8051/8031 Cả hai bit được đặt lên 1 bằng
phần cứng, nhưng phải được xóa bằng phần mềm
6.4 Tốc độ baud port nối tiếp
Như đã nói, tốc độ baud cố định ở các chế độ 0 và 2 Trong chế độ 0 nó luôn luôn là tần số dao động trên chip được chia cho 12 Thông thường thạch anh ấn định tần số dao động trên chip của 8051/8031 nhưng cũng có thể sử dụng nguồn xung nhịp khác Giả sử với tần số dao động danh định là 12 MHz,
tìm tốc độ baud chế độ 0 là 1 MHz
Trang 22Dao động Xung nhịp trên chip tốc độ baud
SMOD=0
trên chip tốc độ baud SMOD=1
SMOD=0
trên chip tốc độ baud SMOD=1
c Chế độ 1 và 3
Hình 2.10 Các nguồn tạo xung nhịp cho port nối tiếp
Mặc nhiên, sau khi reset hệ thống, tốc độ baud chế độ là 2 tần số bộ dao động chia cho 64 Tốc độ baud cũng ảnh hưởng bởi 1 bit trong thanh ghi điều khiển nguồn cung cấp (PCON) Bit 7 của PCON là bit SMOD Đặt bit sMOD lên một làm gấp đôi tốc độ baud trong chế độ 1,2 và 3 Trong chế độ 2, tốc độ baud có thể bị gấp đôi từ giá trị mặc nhiên của 1/64 tần số dao động (SMOD=0) đến 1/32 tần số dao động (SMOD=1)
Vì PCON không được định địa chỉ theo bit, nên để đặt bit SMOD lên 1 cần phải theo các lệnh sau:
MOV A,PCON lấy giá trị hiện thời của PCON SETB ACC.7 đặt bit 7 (SMOD) lên 1
MOV PCON,A ghi giá trị ngược về PCON
Các tốc độ baud trong các chế độ 1 và 3 được xác định bằng tốc độ tràn của timer 1 Vì timer hoạt động ở tần số tương đối cao, tràn timer được chia
÷64
÷32
÷16 ÷32
÷16