1. Trang chủ
  2. » Đề thi

Đề thi thử THPT quốc gia năm 2022 môn toán THPT chuyên lê hồng phong nam định lần 1 năm 2021 2022 (file word có giải) image marked

25 88 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 613,15 KB

Nội dung

Câu TRƯỜNG THPT CHUYÊN LÊ HỒNG PHONG – NAM ĐỊNH ĐỀ THI KSCL LẦN NĂM HỌC 2021 - 2022 TỐN 12 Thời gian:90 phút (Khơng kể thời gian phát đề) Tập xác định D hàm số y  log  x  1 Câu 1   1   B D    ;   C  ;   D  ;   2   2   Cho a, b số thực dương, m số nguyên n số nguyên dương Tìm khẳng định sai A D   0;   m n Câu Câu Câu m m n am  a  m A a  a B a  a C m    D  ab   a m b m b b Cho hình lăng trụ tam giác ABC ABC  có cạnh đáy a chiều cao 2a Thể tích khối trụ có hai đáy hai đường tròn ngoại tiếp tam giác ABC A ' B ' C ' là: 2 a 3 a 2 a  a3 A B C D Một hình nón có chiều cao bán kính đáy có diện tích tồn phần bằng: A 24 B 15 C 9 D 12 Một hình trụ có bán kính đáy a , chu vi thiết diện qua trục 10a Thể tích khối trụ cho n m m n A  a Câu B 3 a C 5 a D 4 a Cho hàm số y  f  x  có lim f  x   lim f  x   1 Khẳng định sau đúng? x  x  A Đồ thị hàm số cho có hai tiệm cận ngang đường thẳng y  đường thẳng y  1 B Đồ thị hàm số cho khơng có tiệm cận ngang C Đồ thị hàm số cho có tiệm cận ngang D Đồ thị hàm số cho có hai tiệm cận ngang đường thẳng x  đường thẳng x  1 Câu x Tính đạo hàm hàm số y  A y   x  sin x   x C y  x Câu sin x  2 sin x 1 sin x  ln B y   x  cos x  x D y   x  cos x  x sin x  ln sin x  Cho hàm số y  f  x  có bảng biến thiên sau Tìm giá trị cực đại yCÐ giá trị cực tiểu yCT tích khối trụ có hai đáy hai đường A yCÐ  yCT  B yCÐ  yCT  2 C yCÐ  2 yCT  Câu D yCÐ  yCT  Cho hàm số y  f  x  xác định  có đồ thị hình vẽ Phương trình f  x   có nghiệm thực? A Câu 10 B C Cho hàm số y  f  x  liên tục đoạn  1;3 có đồ thị hình vẽ D Gọi M m giá trị lớn nhỏ hàm số cho đoạn  1;3 Giá Câu 11 Câu 12 trị M  m A B C Cho hàm số y  x  x  Điểm cực tiểu đồ thị hàm số cho là: A  1;7  B  7; 1 C  3;1 4 Câu 16 x 1 x2 B y  x 1 x3 C y   x3  3x2  x D y   x3  x  B Hàm số nghịch biến khoảng  0;2  C Hàm số nghịch biến khoảng  2;  D Hàm số đồng biến khoảng  0;2   Tập xác định hàm số y  x  x   7 1  1  B  ;    2;   C  \  ;  2  2  1  D  ;  2  Cho hình chóp SABC có SA, SB, SC đơi vng góc SA  a; SB  b; SC  c Tính thể tích khối chóp SABC abc B 3abc C abc D abc Cho hình lập phương ABCD A/ B / C / D / Góc hai đường thẳng A/ B AD / B 120o C 90o D 45o Gọi S tập hợp tất giá trị tham số m để đồ thị hàm số y  x  x  m  156 có tiếp tuyến song song với trục Ox Tổng giá trị S A 156 Câu 20 D 6 A Hàm số nghịch biến khoảng  ;0  A 60o Câu 19 D 18 Cho hàm số y  x  x Mệnh đề đúng? A Câu 18 C 3 B 2 A  Câu 17 C 10 Hàm số sau nghịch biến khoảng  ;   ? A y  Câu 15 B 30 Một mặt cầu có diện tích 4 thể tích khối cầu bằng: A Câu 14 D 1;3 Một lăng trụ có diện tích đáy chiều cao tích A 12 Câu 13 D Cho B 313 log  a;log  b , log 45 175 C 312 D 157 A Câu 21 a a  b 2a B ab 2a Câu 25 B a  0, b  0, c  0, d  D a  0, b  0, c  0, d  B C D Mặt cầu ngoại tiếp tứ diện cạnh a có bán kính A a B a a a C D 2 Cho hình chóp S ABC có SA, SB SC đơi vng góc với Biết SA  SB  SC  Khoảng cách từ điểm S đến mặt phẳng ( ABC ) A B C D Cho hai số dương a, b, a  , thỏa mãn log a b  log a b  Tính loga b A Câu 26 2  b 2a Cho hàm số y   x  mx   4m   x  , với m tham số Số giá trị nguyên m để hàm số A Câu 24 D cho nghịch biến  Câu 23 a 2  b 2a Cho hàm số y  ax  bx  cx  d có đồ thị hình bên Khẳng định sau đúng? A a  0, b  0, c  0, d  C a  0, b  0, c  0, d  Câu 22 C B Gọi A giao điểm đồ thị hàm số y  C D x2 với trục Ox Tiếp tuyến A với đồ thị hàm số 2x 1 cho có hệ số góc A k   Câu 27 B k  C k  D k   3 2 Cho hàm số y  x   m  1 x  m  Tìm số thực dương m để hàm số có giá trị nhỏ đoạn  0; 2 A m  Câu 28 B m  C m  D m  xb Cho hàm số y  ,  ab  2  Biết a, b giá trị thỏa mãn tiếp tuyến đồ thị hàm số ax  điểm A 1; 2  song song với đường thẳng d :3 x  y   Khi giá trị a  3b A 2 Câu 29 Câu 30 B C 1 D  m  1 x  có tiệm cận ngang y  2 có tiệm cận đứng có phương trình: Đồ thị hàm số y  xm3 A y  3 B x  C x  D x  6 Cho hình chóp S ABCD có đáy hình thang vng A D với AB  2a; AD  DC  a Cạnh bên SA vng góc với đáy SA  a Tính chu vi giao tuyến mặt phẳng  SAB  mặt cầu ngoại tiếp hình chóp S ACD : a D a 2 Cho tam giác ABC cân A có AB  AC  a có góc A 1200 Khi quay tam giác ABC quanh cạnh BC đường gấp khúc BAC tạo thành khối trịn xoay tích  a3  3a  3a A 3 a B C D 12 A  a Câu 31 Câu 32 B 2 a C Cho hàm số y  a x y  b x với a, b số thực dương khác 1, có đồ thị hình vẽ Đường thẳng y  cắt trục tung, đồ thị hàm số y  a x y  b x H , M , N Biết HM  3MN , khẳng định sau đúng? A a  b3 Câu 33 B 3a  5b C a  b3 D a  b5 Cho hình chóp SABC có đáy tam giác cân A, AB  a góc A 300 Cạnh bên SA  2a SA   ABC  Gọi M , N trung điểm cạnh SB SC Khi thể tích khối đa diện có đỉnh A, B, C , M , N A Câu 34 a3 a3 12 C 3a D a3 Cho a , b , c ba số thực dương khác Đồ thị hàm số y  a x , y  b x , y  c x cho hình vẽ Mệnh nào sau đúng? A a  b  c Câu 35 B B b  c  a C c  a  b D a  c  b Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , SA   ABCD  , SA  a Gọi M trung điểm SD Tính khoảng cách hai đường thẳng AB CM 2a a a 3a B C D 4 Cho x y hai số thực dương thỏa mãn x  y   x  y  xy Xét hệ thức sau: A Câu 36 Hệ thức ln  x  1  ln  y  1  ln  x  y  1 Hệ thức ln  x  1  ln  y  1  ln  y  1  ln  x  1 Hệ thức ln  x  y  xy  1  ln  x  y  Hệ thức ln  x  y  xy    ln  x  y  Câu 37 Câu 38 Câu 39 Trong hệ thức trên, có hệ thức đúng? A B C 15 40 Cho x, y hai số nguyên thỏa mãn: 3x.6 y  50 25 Tính x y ? 12 A 445 B 755 C 450 y Cho hàm số y  với x  Khi  y x   ln x x x 1 A  B C x x 1  x  ln x B Câu 43 D x  x  ln x C 102.017.000đồng D 102.424.000 đồng  x  1  x  1 Số điểm cực trị hàm số cho C D x4 có đồ thị  C  đường thẳng  d  :2 x  y  m , với m tham số Biết x 1 với giá trị m  d  ln cắt  C  hai điểm A, B Tìm độ dài nhỏ đoạn AB Cho hàm số y  A Câu 42 B 102.016.000đồng Cho hàm số f  x  có đạo hàm f   x   x A Câu 41 D -425 Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0,4% / tháng Biết không rút tiền ta khỏi ngân hàng sau tháng, số tiền lãi lập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn ban đầu lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi xuất không thay đổi? A 102.423.000 đồng Câu 40 D B C D ln x  với m tham số Gọi S tập hợp giá trị nguyên dương m để ln x  2m hàm số đồng biến khoảng 1; e  Tìm số phần tử S A B C D Cho hàm số f  x   ax  bx  cx  d , biết hàm số đạt cực đại x  đạt cực tiểu x  2 Cho hàm số y  Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y   x  1  x   f  x   f 1 A Câu 44 B C D Cho hàm số y  f  x   x   2m  1 x    m  x  Tìm tất giá trị thực tham số m để hàm số y  f  x  có điểm cực trị A m  Câu 45 1 m C m  D   m3 x, y thỏa mãn điều kiện x  y  Giá trị nhỏ biểu thức x  3log y y Cho số thực T  log 2x  x  y A 15 Câu 46 B B 16 C 13 Cho hàm số y  f  x  liên tục [1;3] có bảng biến thiên sau D 14 Có giá trị nguyên m để phương trình f ( x  1)  Câu 47 Câu 48 m có nghiệm x  4x  khoảng (1; 2) ? A B 10 C D Cho hình chóp S ABCD tích V đáy ABCD hình bình hành Gọi M , N , P , Q trung điểm cạnh SA , SB , SC , SD Gọi H1 khối đa diện có đỉnh A , B , C , D , P , Q H khối đa diện có đỉnh A , B , C , D , M , N Tính thể tích phần chung hai khối đa diện H1 H theo V V 3V 4V 5V A B C D 12 Biết đường thẳng y  x  cắt đồ thị hàm số y  x A , xB Giá trị biểu thức x A  xB A B 2x 1 hai điểm phân biệt A B có hồnh độ x 1 C D Câu 49 Gọi M , m giá trị lớn nhất, giá trị nhỏ hàm số y  ( x  1) ln x đoạn 1   e ;e  Khi M  m e 1 e2  A B C e  D e e e Câu 50 Cho hình lăng trụ đứng ABC  ABC  có đáy ABC tam giác vng cân B có BC  a góc đường thẳng AB mặt phẳng  BCC B  60 Thể tích khối lăng trụ ABC ABC  a3 A a3 B a3 C HẾT D a3 TRƯỜNG THPT CHUYÊN LÊ HỒNG PHONG – NAM ĐỊNH ĐỀ THI KSCL LẦN NĂM HỌC 2021 - 2022 TỐN 12 Thời gian:90 phút (Khơng kể thời gian phát đề) Câu Tập xác định D hàm số y  log  x  1 A D   0;     B D    ;     1  C  ;   2  1  D  ;   2  Lời giải Chọn B Ta có hàm số y  log  x  1 xác định x    x   Câu Cho a, b số thực dương, m số nguyên n số nguyên dương Tìm khẳng định sai m n A a  a n m m n m B a  a m n am  a  C m    b b D  ab   a m b m m Lời giải Chọn B m n Ta có a  n a m Câu Cho hình lăng trụ tam giác ABC ABC  có cạnh đáy a chiều cao 2a Thể tích khối trụ có hai đáy hai đường tròn ngoại tiếp tam giác ABC A ' B ' C ' là: 2 a 3 a 2 a  a3 A B C D Lời giải Chọn A Khối trụ có chiều cao chiều cao lăng trụ nên h  2a Xét đường tròn đáy ngoại tiếp tam giác ABC nên theo hình vẽ ta có: Bán kính R  GA  2 a AM   AB.sin 60   3 2 a Câu Một hình nón có chiều cao bán kính đáy có diện tích tồn phần bằng: A 24 B 15 C 9 D 12 Do thể tích khối trụ V   R h  Lời giải Chọn A Diện tích tồn phần nón S   rl   r   r r  h   r  24 Câu Một hình trụ có bán kính đáy a, chu vi thiết diện qua trục 10a Thể tích khối trụ cho A  a B 3 a C 5 a D  a Lời giải Chọn B Thiết diện qua trục hình chữ nhật có độ dài tương ứng 2r h ( r , h tương ứng bán kính đáy chiều cao trụ) Do  2r  h  10  h  3a Vậy thể tích khối trụ cho là: V   r h  3 a Câu Cho hàm số y  f  x  có lim f  x   lim f  x   1 Khẳng định sau đúng? x  x  A Đồ thị hàm số cho có hai tiệm cận ngang đường thẳng y  đường thẳng y   B Đồ thị hàm số cho khơng có tiệm cận ngang C Đồ thị hàm số cho có tiệm cận ngang D Đồ thị hàm số cho có hai tiệm cận ngang đường thẳng x  đường thẳng x  1 Lời giải Chọn A Vì lim f  x   lim f  x   1 nên đồ thị hàm số cho có hai tiệm cận ngang đường x  x  thẳng y  đường thẳng y   x sin x2 Câu Tính đạo hàm hàm số y  A y   x  sin x   x x C y  2 sin x  2 sin x 1 B y   x  cos x  x sin x  D y   x  cos x  x ln ln sin x  Lời giải Chọn B   x Ta có y  x  sin x  2   x  cos x  x sin x  2 sin x  ln ln Câu Cho hàm số y  f  x  có bảng biến thiên sau yCÐ giá trị cực tiểu yCT tích khối trụ có hai đáy hai đường A yCÐ 3 yCT  B yCÐ 3 yCT 2 C yCÐ 2 yCT  D yCÐ  yCT  Tìm giá trị cực đại Lời giải Chọn A Câu Cho hàm số y  f  x  xác định  có đồ thị hình vẽ Phương trình f  x   có nghiệm thực? A C B D Lời giải Chọn B Câu 10 Cho hàm số y  f  x  liên tục đoạn  1;3 có đồ thị hình vẽ Gọi M m giá trị lớn nhỏ hàm số cho đoạn  1;3 Giá trị M  m A C B D Lời giải Chọn B Ta có M  max f  x  3, m  f  x  2 suy M  m  1;3 1;3 Câu 11 Cho hàm số y  x 3x  Điểm cực tiểu đồ thị hàm số cho là: A  1;7  B  7; 1 C  3;1 D 1;3 Lời giải Chọn D Ta có: y '  3x2 3 x  1 y  y'     x  1  y  y ''  x y '' 1   Nên điểm cực tiểu ĐTHS 1;3 Câu 12 Một lăng trụ có diện tích đáy chiều cao tích A 12 C 10 Lời giải B 30 D 18 Chọn B V  B.h  5.6  30 Câu 13 Một mặt cầu có diện tích  thể tích khối cầu bằng: 4 A B  C 3 D 6 Lời giải Chọn A Ta có: S  4 R  R  4 4 V  R  3 Câu 14 Hàm số sau nghịch biến khoảng  ;   ? A y  x 1 x2 B y  x 1 x3 y x3 3x2 9x D y x3  x 1 C Lời giải Chọn C Ta có: y x3 3x2 9x  y' 3x2  6x 9  0,x Nên hàm số Câu 15 Cho hàm số y x3 3x2 9x nghịch biến khoảng  ;   y  x3 3x2 Mệnh đề đúng? A Hàm số nghịch biến khoảng  ;0 B Hàm số nghịch biến khoảng  0;2 C Hàm số nghịch biến khoảng  2; D Hàm số đồng biến khoảng  0;2 Lời giải Chọn B Ta có: y '  3x  x x  y'    x  y '  0, x   0;2 nên hàm số nghịch biến khoảng  0;2 Câu 16 Tập xác định hàm số y   x  x   7   1 2 1 2   B  ;    2;   A  1  2  C  \  ;2 D  ;  Lời giải Chọn C x   Điều kiện xác định hàm số x  x      x  1  2  Vậy tập xác định hàm số D   \  ;2 Câu 17 Cho hình chóp SABC có SA , SB , SC đơi vng góc SA  a ; SB  b ; SC  c Tính thể tích khối chóp SABC A abc B 3abc C abc D abc Lời giải Chọn C 1 abc SA SB.SC  Câu 18 Cho hình lập phương ABCD A / B / C / D / Góc hai đường thẳng A/ B AD / A o B 120o C o D o VSABC  Lời giải Chọn A Ta có A / B / / D / C , nên góc hai đường thẳng A/ B AD / góc hai đường thẳng D / C AD / góc  AD/C   AD/C  60o ; Mà tam giác ACD / tam giác nên góc hai đường thẳng A/ B AD / 60 o Câu 19 Gọi S tập hợp tất giá trị tham số m để đồ thị hàm số y  x tiếp tuyến song song với trục O x Tổng giá trị S  2x2  m156 có B 313 A 156 C 312 D 157 Lời giải Chọn B x  Với số thực x, ta có y /  x  x     x  1 Ta có y(0)  m 156; y 1  m 157  m  156   m  156 Yêu cầu toán  Vậy tổng giá trị S 313   m  157   m  157 Câu 20 Cho A log3  a;log5  b , log45 175 a  a  b 2a B ab 2a C a   b 2a D   b 2a Lời giải Chọn C Ta có log45 175  Câu 21 Cho hàm số log5 52.7 2b  b a(2  b)    log5  2log5  2a a y  ax3  bx2  cx  d có đồ thị hình bên Khẳng định sau đúng? A a  0, b  0, c  0, d  C a  0, b  0, c  0, d  B a  0, b  0, c  0, d  D a  0, b  0, c  0, d  Lời giải Chọn A Quan sát đồ thị hàm số ta thấy: a  Đồ thị hàm số cắt trục tung điểm có tung độ dương  d  Hàm số có hai điểm cực trị x1; x2 thỏa mãn: 2b  b x1  x2   0  0   a 3a   b  0; c   c c x x   0 0  3a   a Câu 22 Cho hàm số y  x  mx   4m  9 x  , với số cho nghịch biến  A B m tham số Số giá trị nguyên m để hàm C Lời giải Chọn C D Hàm số ngịch biến   a    0(ld )  y    x  mx  m   0,  x         m  3(4 m  9)   m  12 m  27     m   Mà m    m 9;  8;  7;  6; ;  3 Vậy có số nguyên thỏa mãn Câu 23 Mặt cầu ngoại tiếp tứ diện cạnh A a B a có bán kính a C a D a Lời giải Chọn D Gọi G trọng tâm BCD , ta có AG  ( BCD ) nên AG trục BCD Gọi M trung điểm AB Qua M dựng đường thẳng   AB , gọi { I }    AG Do mặt cầu ngoại tiểp tứ diện ABCD có tâm I bán kính R  LA AI AM AM Ta có AMI AGB hai tam giác vuông đồng dạng nên:   AI  AB  AB AG AG 2 a 3 a a Do A B  a , AM  , AG  a       3  a a Khi R  AI  a   a Câu 24 Cho hình chóp S ABC có SA , SB SC đơi vng góc với Biết SA  SB  SC  Khoảng cách từ điểm S đến mặt phẳng ( ABC ) A B C Lời giải Chọn C Gọi d  S;  ABC    h Ta có: 1 1 1 1     2 2  2 2 h SA SB SC 3 3 Suy h2   h  3 D Câu 25 Cho hai số dương a , b , a  , thỏa mãn log a2 b  log a b  Tính A B C loga b D Lời giải Chọn D log a b  log a b   log a b  x2 Câu 26 Gọi A giao điểm đồ thị hàm số y  với trục Ox Tiếp tuyến A với đồ thị 2x 1 Ta có: log a b  log a b   hàm số cho có hệ số góc A k   B k  C k  D k   Lời giải Chọn B + Đồ thị hàm số cho cắt trục hoành A  2;0  + Ta có y   x  1  y    + Vậy tiếp tuyến A với đồ thị hàm số cho có hệ số góc k  Câu 27 Cho hàm số y  x   m  1 x  m  Tìm số thực dương 2 m để hàm số có giá trị nhỏ đoạn  0;2 A m  B m  C m  Lời giải D m  Chọn C 2 Ta có y  3x  m 1  y  0, x  0;2  hàm số đồng biến  0;2 Suy giá trị nhỏ hàm số đoạn  0;2  y  0   m2    m  ( Câu 28 Cho hàm số y  m dương) xb ,  ab  2  Biết a , b giá trị thỏa mãn tiếp tuyến đồ thị ax  hàm số điểm A 1; 2 song song với đường thẳng d :3 x  y   Khi giá trị a  3b A 2 B C 1 D Lời giải Chọn A 2  ab 2  ab + Ta có y   y 1  2  ax    a  2 1 b + A 1; 2 thuộc đò thị hàm số nên     b  2  a    b  2a  a2 + Vậy tiếp tuyến với đồ thị hàm số A 1; 2 song song với đường thẳng d : y   x  nên y  1      ab a  2 a  2     a   a     a    a  3a     a  +TH1: a   b  1  ab  2 ( loại) +TH2: a   b   a  3b  2 Câu 29 Đồ thị hàm số y   m 1 x  trình: A y   x m3 có tiệm cận ngang y   có tiệm cận đứng có phương B x  C x  D x  6 Lời giải Chọn D Do đồ thị hàm số có đường tiệm cận ngang y   nên m   2  m  3 Vậy tiệm cận đứng đồ thị hàm số có phương trình: x  6 Câu 30 Cho hình chóp S.ABCD có đáy hình thang vng A D với AB  2a; AD  D C  a Cạnh bên SA vng góc với đáy SA  a Tính chu vi giao tuyến mặt phẳng  SAB  mặt cầu ngoại tiếp hình chóp S.ACD : A  a B 2 a C a D a Lời giải Chọn B Gọi O trung điểm AC , I trung điểm SC Do tam giác ADC vuông D nên O tâm đường tròn ngoại tiếp tam giác ADC Mặt khác OI / / SA nên OI   DAC  suy IA  DI  IC  SI Hay I tâm mặt cầu ngoại tiếp hình chóp S.ACD Bán kính mặt cầu R  SC a  2 Giả sử mặt phẳng  SAB  cắt mặt cầu ngoại tiếp hình chóp S.ACD theo giao tuyến 2 đường tròn có bán kính r Ta có r  R  h h  d  I ,  SAB  Lại có d  I ;  SAB    1 1 d  C ;  SAB    d  D ,  SAB    DA  a 2 2 a nên chu vi đường tròn giao tuyến mặt phẳng  SAB  mặt cầu ngoại tiếp hình chóp S.ACD là: C   r   a Câu 31 Cho tam giác ABC cân A có AB  AC  a có góc A 1200 Khi quay tam giác ABC quanh cạnh BC đường gấp khúc BAC tạo thành khối trịn xoay tích a3  3a3  3a3 3  a A B C D 12 Vậy r  Lời giải Chọn D Khi quay tam giác ABC quanh cạnh BC đường gấp khúc BAC tạo thành hai khối nón trịn xoay có đường cao h  a a bán kính R  2 1 Vậy thể tích khối trịn xoay V  2.  3 Câu 32 Cho hàm số y  ax y  bx với a2 a  a3   12 a , b số thực dương khác 1, có đồ thị hình vẽ Đường thẳng y  cắt trục tung, đồ thị hàm số y  a Biết 2HM  3MN , khẳng định sau đúng? x A a  b B 3a  5b C a  b y  bx H,M ,N D a  b Lời giải Chọn D HM  MN  HM  HN x Gọi M  x1;3  y  a  x1  loga N  x1;3  y  bx  x2  logb Khi 3 3 HM  HN  log a  log b    log a  log b  a  b  a  b5 5 log a 5log b Câu 33 Cho hình chóp SABC có đáy tam giác cân A , AB  a góc A 0 Cạnh bên SA  2a SA   ABC  Gọi M , N trung điểm cạnh SB SC Khi thể tích khối đa diện có đỉnh A, B , C , M , N a3 A 3a3 C a3 B 12 Lời giải Chọn D 1 a3 V  a a a sin30  Ta có SABC VSAMN SM SN 1 a3     VSAMN  VSABC SB SC 2 24 a3 D Vậy VAMNBC  a3 a3 a3   24 Câu 34 Cho a , b , c ba số thực dương khác Đồ thị hàm số y  a x , y  b x , y  c x cho hình vẽ Mệnh nào sau đúng? A a  b  c B b  c  a C c  a  b D a  c  b Lời giải Chọn D 0  a  Dựa vào đồ thị, dễ thấy  b, c  Đường thẳng x  cắt hai đồ thị y  b x , y  c x b , c ta thấy b  c Vậy a  c  b Câu 35 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a , SA   ABCD  , SA  a Gọi M trung điểm SD Tính khoảng cách hai đường thẳng AB CM A 2a B a C 3a D Lời giải Chọn B S H M A B Ta có AB // CD nên AB //  SCD  Khi d  AB, CM   d  AB,  SCD    d  A,  SCD   CD  AD Ta có   CD   SAD    SCD    SAD  CD  SA D C a Trong mặt phẳng  SAD  vẽ AH  SD H  SAD    SCD   Khi  SAD    SCD   SD  AH   SCD   d  A;  SCD    AH  Trong  SAD  : AH  SD Ta có AH  SA AD SA  AD 2  a 3.a a 3   a2 a a Câu 36 Cho x y hai số thực dương thỏa mãn x  y   x  y  xy Xét hệ thức sau: Vậy d  AB, CM   Hệ thức ln  x  1  ln  y  1  ln  x  y  1 Hệ thức ln  x  1  ln  y  1  ln  y  1  ln  x  1 Hệ thức ln  x  y  xy  1  ln  x  y  Hệ thức ln  x  y  xy    ln  x  y  Trong hệ thức trên, có hệ thức đúng? A B C D Lời giải Chọn D Ta có x  y   x  y  xy   x  xy  y    x  x  1   y  y      x  y    x  1   y   2  x  y 2   x      x  1    y     y    Hệ thức ln  x  1  ln  y  1  ln  x  y  1  ln  ln  ln (đúng) Hệ thức ln  x  1  ln  y  1  ln  y  1  ln  x  1  ln  ln  ln  ln (sai) Hệ thức ln  x  y  xy  1  ln  x  y   ln10  ln (sai) Hệ thức ln  x  y  xy    ln  x  y   ln  ln (đúng) Vậy có hệ thức 215.640 Câu 37 Cho x, y hai số nguyên thỏa mãn:  50 25 Tính x y ? 12 A.445 B 755 C 450 x y Lời giải Chọn C D.-425 215.640 215.240.340 x y y  3   3x  y.2 y  385.25 950.1225 3100.325.250  x  y  85  x  90    xy  450  y5  y5 Ta có: 3x.6 y  Câu 38 Cho hàm số y  A  x y với x  Khi  y x   ln x x x 1 B C x 1  x  ln x D x  x  ln x Lời giải Chọn A   y 1 Ta có: y    x   ln x      x   ln x      y y x x   ln x  y Câu 39 Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0,4% / tháng Biết khơng rút tiền ta khỏi ngân hàng sau tháng, số tiền lãi lập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn ban đầu lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi xuất khơng thay đổi? A.102.423.000 đồng B 102.016.000đồng C 102.017.000đồng D 102.424.000 đồng Lời giải Chọn D Áp dụng công thức lãi kép ta có sau tháng, người lĩnh số tiền:  0,  Ta có: An  A0 (1  r )  100.000.000 1    102.424.128  100  n Câu 40 Cho hàm số f  x  có đạo hàm f   x   x  x  1  x  1 Số điểm cực trị hàm số cho A B C D Lời giải Chọn B  x   Ta có f   x     x  1  x   Bảng xét dấu f   x  : Vậy hàm số cho có cực trị Cách khác: Số điểm cực trị hàm số số nghiệm đơn nghiệm bội lẻ phương trình f   x   nên đáp án điểm cực trị x4 có đồ thị  C  đường thẳng  d  :2 x  y  m , với m tham số Biết x 1 với giá trị m  d  cắt  C  hai điểm A, B Tìm độ dài nhỏ Câu 41 Cho hàm số y  đoạn AB A B C D Lời giải Chọn D Xét phương trình hồnh độ giao điểm  C   d  : x4  x  1  m  2x   x 1 2 x    m  x  m   * Gọi x1 , x2 hai nghiệm phân biệt phương trình  * , suy A  x1 ; m  x1  , B  x2 ; m  x2  m  2  m3  AB   x1  x2    x1  x2   x1 x2     20      1  5m  10m  205   m  1  200  2 (  m  1  0, m ) Dấu xảy m  1 Vậy độ dài AB nhỏ ln x  Câu 42 Cho hàm số y  với m tham số Gọi S tập hợp giá trị nguyên dương ln x  2m m để hàm số đồng biến khoảng 1; e  Tìm số phần tử S B A C D Lời giải Chọn D Xét y  ln x  ln x  2m có đk  ln x  2m x  Vì x  1; e  nên ln x   0;1 Ta có y   2m  ln x  2m  x m  6  2m    Hàm số đồng biến khoảng 1; e     1 2m   0;1 m   0;     Mà m nguyên dương nên m  1; 2 Vậy số phần tử S Câu 43 Cho hàm số f  x   ax  bx  cx  d , biết hàm số đạt cực đại x  đạt cực tiểu x  2 Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số y  A B C  x  1  x   f  x   f 1 D Lời giải Chọn D Điều kiện: x  Vì hàm số đạt cực đại x  đạt cực tiểu x  2 nên hệ số a  Xét x    f  x   f 1   Do hàm số đề khơng có tiệm cận ngang x   Xét f  x   f 1   f  x   f 1   x  a  2   0;    x  b  Khi lim y  x 1 : không xác định lim y   : đồ thị hàm số có tiệm cận đứng x  b  x b Vậy đồ thị hàm số đề có tiệm cận đứng Câu 44 Cho hàm số y  f  x   x   2m  1 x    m  x  Tìm tất giá trị thực tham số m để hàm số y  f A m   x  có điểm cực trị B 1 m C m  D   m3 Lời giải Chọn A Để hàm số y  f  x  có điểm cực trị hàm số y  f  x  có cực trị dương Khi f   x   x   2m  1 x   m  có hai nghiệm phân biệt có nghiệm dương nghiệm cịn lại phải bé Suy m      2m  12    m     m  7  177  4m  m        3 m   m  0 3  m   x1 x2     177  m    Câu 45 Cho số thực x, y thỏa mãn điều kiện x  y  Giá trị nhỏ biểu thức x T  log 2x  x   3log y y y A 15 B 16 C 13 D 14 Lời giải Chọn A       x   3log y x    3log y x    Ta có T  log 2x  x   3log y   x   y log x  log y   y x x2    log x2 y          3  1   log x y  log x y 2  Đặt t  log x y ; x  y   t   0;1 Khi T  Xét hàm số g (t )  g (t )  1  t  1  t   3 t   3, t   0;1 t  ; g (t )   t  (1  t ) t 1 Suy g (t )  g    15 (0;1) 3  y  x, (1  y  x) Câu 46 Cho hàm số y  f  x  liên tục [1;3] có bảng biến thiên sau Vậy Tmin  15 , log x y  Có giá trị nguyên m để phương trình f ( x  1)  khoảng (1; 2) ? A B 10 C m có nghiệm x  4x  D Lời giải Chọn A Ta có f ( x  1)  m  m   x  x   f  x  1 (1) x  4x  Xét g ( x)   x  x   f  x  1 ; x  (1; 2) 2 x    f ( x  1)     Có g ( x)   x   f ( x  1)   x  x   f  x  1 ; x  (1; 2)   x  4x    f ( x  1)  Suy g ( x)  0, x  1;  Do phương trình (1) có nghiệm x  (1; 2)  g (2)  m  g (1)   m  Mà m   nên m  4;;5;6;7 Vậy có giá trị ngun Câu 47 Cho hình chóp S ABCD tích V đáy ABCD hình bình hành Gọi M , N , P , Q trung điểm cạnh SA , SB , SC , SD Gọi H1 khối đa diện có đỉnh A , B , C , D , P , Q H khối đa diện có đỉnh A , B , C , D , M , N Tính thể tích phần chung hai khối đa diện H1 H theo V V 3V 4V A B C D 5V 12 Lời giải Chọn C S M Q P N J I A B D C E Gọi E trung điểm BC I  BP  CN , J  DM  AQ Khi phần chung hai khối đa diện khối đa diện gồm đỉnh A , B , C , D , I , J Ta có I , J trọng tâm tam giác SBC , SAD VIJABCD  VIABCD  VIADJ 1 1 VIABCD  d  I ,  ABCD   S ABCD  d  S ,  ABCD   S ABCD  V 3 3 1 2 VIADJ  d  I ,  ADJ   S ADJ  d  E ,  SAD   S SAD  d  B,  SAD   S SAD  VBSAD  V 3 3 9 1 Vậy VIJABCD  V  V  V 9 Câu 48 Biết đường thẳng y  x  cắt đồ thị hàm số y  2x 1 hai điểm phân biệt A B có x 1 hoành độ x A , xB Giá trị biểu thức x A  xB A B C D Lời giải Chọn D Xét phương trình hồnh độ giao điểm x   2x 1   x   x  1  x  với x  x 1  x  x    * x A , xB hai nghiệm phương trình * , x A  xB  Câu 49 Gọi M , m giá trị lớn nhất, giá trị nhỏ hàm số y  ( x  1) ln x đoạn 1   e ;e  Khi M  m e 1 e2  A B C e  D e e e Lời giải Chọn C 1 1  y '  ln x   ; y ''    x   ; e  x x x e    y '  ln x   x   1 1   y ''    x   ; e  x x e    1  y '    e  0; y '  e     e  e 1  Do y '  có nghiệm x   ;e  e     e 1 y e   e     y e  e 1  M  M  m  e 1   y 1   m  Câu 50 Cho hình lăng trụ đứng ABC  ABC  có đáy ABC tam giác vng cân B có BC  a góc đường thẳng AB mặt phẳng  BCC B  60 Thể tích khối lăng trụ ABC ABC  a3 A a3 B a3 C Lời giải D a3 Chọn C AB ^ ( BB ¢C ¢C ) nên góc AB ' mặt phẳng  ABB ' A ' đáy  AB ' B  600 AB AB a  BB '   BB ' 3 1  BA.BC  a 2.a  a 2 Tam giác ABB ' vng B nên tan 600  Diện tích tam giác ABC kẻ S ABC Vậy thể tích khối lăng trụ ABC A ' B ' C ' V  BB '.a  HẾT a a3 a  3 ... a3 TRƯỜNG THPT CHUYÊN LÊ HỒNG PHONG – NAM ĐỊNH ĐỀ THI KSCL LẦN NĂM HỌC 20 21 - 2022 TOÁN 12 Thời gian:90 phút (Không kể thời gian phát đề) Câu Tập xác định D hàm số y  log  x  1? ?? A D   0;... x  Với số thực x, ta có y /  x  x     x  ? ?1 Ta có y(0)  m ? ?15 6; y ? ?1? ??  m ? ?15 7  m  15 6   m  15 6 Yêu cầu toán  Vậy tổng giá trị S 313   m  15 7   m  15 7 Câu 20 Cho A log3... y A 15 Câu 46 B B 16 C 13 Cho hàm số y  f  x  liên tục [1; 3] có bảng biến thi? ?n sau D 14 Có giá trị nguyên m để phương trình f ( x  1)  Câu 47 Câu 48 m có nghiệm x  4x  khoảng (1; 2)

Ngày đăng: 15/12/2021, 17:34

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w