THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 122 |
Dung lượng | 10,7 MB |
Nội dung
Ngày đăng: 12/12/2021, 21:02
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
4. Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R., 1998. Large Area Hydrologic Modeling and Assessment Part i: Model Development. Journal of the American Water Resources Association, 34, 73–89.https://doi.org/10.1111/j.1752-1688.1998.tb05961.x | Link | |
6. Bui, H. H., Ha, N. H., Nguyen, T. N. D., Nguyen, A. T., Pham, T. T. H., Kandasamy, J., & Nguyen, T. V., 2019. Integration of SWAT and QUAL2K for Water Quality Modeling in a Data Scarce Basin of Cau River basin in Vietnam.Journal of Ecohydrology & Hydrobiology, 19(2), 210–223.https://doi.org/10.1016/j.ecohyd.2019.03.005 | Link | |
9. Devia, G. K., Ganasri, B. P., & Dwarakish, G. S., 2015. A Review on Hydrological Models. Aquatic Procedia, 4, 1001–1007.https://doi.org/10.1016/j.aqpro.2015.02.126 | Link | |
17. Hong, N. T., 2018. Water Quality Evaluation of the Tien River by Means of Water Quality Index (WQI) and Statistical Techniques. Vietnam Journal of Science and Technology, 56(2A), 141–148. https://doi.org/10.15625/2525- 2518/56/2A/12642 | Link | |
18. Hue, N. H., & Thanh, N. H., 2020. Surface Water Quality Analysis using Fuzzy Logic Approach: A Case of Inter-provincial Irrigation Network in Vietnam. IOP Conference Series: Earth and Environmental Science, 527, 012017.https://doi.org/10.1088/1755-1315/527/1/012017 | Link | |
22. Kamble, S. R., & Vijay, R., 2011. Assessment of Water Quality using Cluster Analysis in Coastal Region of Mumbai, India. Environmental Monitoring and Assessment, 178(1–4), 321–332. https://doi.org/10.1007/s10661-010-1692-0 | Link | |
24. Mendez, M., Maathuis, B., Hein-Griggs, D., & Alvarado-Gamboa, L.-F., 2020. Performance Evaluation of Bias Correction Methods for Climate Change Monthly Precipitation Projections over Costa Rica. Water, 12(2), 482.https://doi.org/10.3390/w12020482 | Link | |
25. Mishra, A., 2010. Assessment of Water Quality using Principal Component Analysis: A Case Study of the River Ganges. Journal of Water Chemistry and Technology, 32(4), 227–234. https://doi.org/10.3103/S1063455X10040077 | Link | |
26. Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., & Veith, T., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE, 50(3), 885-900.http://dx.doi.org/10.13031/2013.23153 | Link | |
28. Okwala, T., Shrestha, S., Ghimire, S., Mohanasundaram, S., & Datta, A., 2020. Assessment of Climate Change Impacts on Water Balance and Hydrological Extremes in Bang Pakong-Prachin Buri River Basin, Thailand. Environmental Research, 186, 109544. https://doi.org/10.1016/j.envres.2020.109544 | Link | |
32. Shrestha, M., Acharya, S. C., & Shrestha, P. K., 2017. Bias correction of climate models for hydrological modelling—Are simple methods still useful? Are Simple Bias Correction Methods Still Useful? Meteorological Applications, 24(3), 531–539. https://doi.org/10.1002/met.1655 | Link | |
33. Shrestha, S., Bhatta, B., Shrestha, M., & Shrestha, P. K., 2018. Integrated Assessment of the Climate and Landuse Change Impact on Hydrology and Water Quality in the Songkhram River Basin, Thailand. Science of The Total Environment, 643, 1610–1622. https://doi.org/10.1016/j.scitotenv.2018.06.306 | Link | |
34. Shrestha, S., Shrestha, M., & Babel, Mukand. S., 2016. Modelling the Potential Impacts of Climate Change on Hydrology and Water Resources in the Indrawati River Basin, Nepal. Environmental Earth Sciences, 75(4), 280.https://doi.org/10.1007/s12665-015-5150-8 | Link | |
37. Son, C. T., Giang, N. T. H., Thao, T. P., Nui, N. H., Lam, N. T., & Cong, V. H., 2020. Assessment of Cau River Water Quality Assessment using a Combination of Water Quality and Pollution Indices. Journal of Water Supply: Research and Technology-Aqua, 69(2), 160–172. https://doi.org/10.2166/aqua.2020.122 | Link | |
38. Sun, G., McNulty, S. G., Moore Myers, J. A., & Cohen, E. C., 2008. Impacts of Multiple Stresses on Water Demand and Supply Across the Southeastern United States. JAWRA Journal of the American Water Resources Association, 44(6), 1441–1457. https://doi.org/10.1111/j.1752-1688.2008.00250.x | Link | |
39. Tan, M. L., Gassman, P. W., Srinivasan, R., Arnold, J. G., & Yang, X., 2019. A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water, 11(5), 914. https://doi.org/10.3390/w11050914 | Link | |
40. Taylor, P., & Wright, G., 2001. Establishing River Basin Organizations in Vietnam: Red River, Dong Nai River and Lower Mekong Delta. Water Science and Technology, 43(9), 273–281. https://doi.org/10.2166/wst.2001.0557 | Link | |
41. Thai, T. H., Thao, N. P., & Dieu, B. T., 2017. Assessment and Simulation of Impacts of Climate Change on Erosion and Water Flow by Using the Soil and Water Assessment Tool and GIS: Case Study in Upper Cau River basin in Vietnam. Vietnam Journal of Earth Sciences, 39(4), 376–392.https://doi.org/10.15625/0866-7187/39/4/10741 | Link | |
43. Tran, V.-B., Ishidaira, H., Nakamura, T., Do, T.-N., & Nishida, K., 2017. Estimation of Nitrogen Load with Multi-pollution Sources Using the SWAT Model: A Case Study in the Cau River Basin in Northern Vietnam. Journal of Water and Environment Technology, 15(3), 106–119.https://doi.org/10.2965/jwet.16-052 | Link | |
44. Tripathi, M., & Singal, S. K., 2019. Use of Principal Component Analysis for Parameter Selection for Development of a Novel Water Quality Index: A Case Study of River Ganga India. Ecological Indicators, 96, 430–436.https://doi.org/10.1016/j.ecolind.2018.09.025 | Link |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN