Tài liệu Chuyên đề toán 12-Nguyễn Thành Đô pptx

39 526 5
Tài liệu Chuyên đề toán 12-Nguyễn Thành Đô pptx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

1 HÀM SỐ 1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Dạng 1: Tính đơn điệu của hàm số I. Kiến thức cơ bản 1. Định nghĩa Giả sử hàm số y = f(x) xác định trên K: + Hàm số y = f(x) được gọi đồng biến trên khoảng K nếu: 1 2 1 2 1 2 , , ( ) ( )x x K x x f x f x     + Hàm số y = f(x) được gọi là nghịch biến trên khoảng K nếu: 1 2 1 2 1 2 , , ( ) ( )x x K x x f x f x     2. Qui tắc xét tính đơn điệu a. Định lí Cho hàm số y = f(x) có đạo hàm trên K: + Nếu f’(x) > 0 với mọi x thuộc K thì hàm số đồng biến + Nếu f’(x) < 0 với mọi x thuộc K thì hàm số nghịch biến b. Qui tắc B1: Tìm tập xác định của hàm số B2: Tính đạo hàm của hàm số. Tìm các điểm x i (i = 1, 2,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định. B3: Sắp xếp các điểm x i theo thứ tự tăng dần và lập bảng biến thiên. B4: Nêu kết luận về các khoảng đồng biến, nghịch biến. II. Các ví dụ Loại 1: Xét sự biến thiên của hàm số Ví dụ 1. Xét sự đồng biến và nghịc biến của hàm số: 3 2 2 4 2 1 1 . y = 2 2 b. y = -x 3 4 e. y = x( 3), (x > 0) 3 2 x - 1 c. y = x 2 3 . y = x +1 a x x x x x x d         Ví dụ 2. Xét sự biến thiên của các hàm số sau: 2 3 4 2 3 2 2 2 . y = 3x 8 b. y = x 8 5 c. y = x 6 9 3- 2x x 2 3 . y = e. y = f. y = 25-x x + 7 1 a x x x x x d x         Loại 2: Chứng minh hàm số đồng biến hoặc nghịch biến trên khoảng xác định. Phương pháp + Dựa vào định lí. Ví dụ 3. Chứng minh hàm số 2 2y x x  nghịch biến trên đoạn [1; 2] Ví dụ 4 a. Chứng minh hàm số 2 9y x  đồng biến trên nửa khoảng [3; +  ). b. Hàm số 4 y x x   nghịc biến trên mỗi nửa khoảng [-2; 0) và (0;2] Ví dụ 5. Chứng minh rằng a. Hàm số 3 2 1 x y x    nghịch biến trên mỗi khoảng xác định của nó. b. Hàm số 2 2 3 2 1 x x y x    đồng biến trên mỗi khoảng xác định của nó. c. Hàm số 2 8y x x    nghịch biến trên R. Dạng 2. Tìm giá trị của tham số để một hàm số cho trước đồng biến, nghịch biến trên khoảng xác định cho trước Phương pháp: + Sử dụng qui tắc xét tính đơn điêu của hàm số. 2 + Sử dụng định lí dấu của tam thức bậc hai Ví dụ 6. Tìm giá trị của tham số a để hàm số 3 2 1 ( ) ax 4 3 3 f x x x    đồng biến trên R. Ví dụ 7. Tìm m để hàm số 2 2 5 6 ( ) 3 x x m f x x      đồng biến trên khoảng (1; ) Ví dụ 8. Với giá trị nào của m, hàm số: 2 1 m y x x     đồng biến trên mỗi khoảng xác định của nó. Ví dụ 9 Xác định m để hàm số 3 2 ( 1) ( 3) 3 x y m x m x      đồng biến trên khoảng (0; 3) Ví dụ 10 Cho hàm số 4mx y x m    a. Tìm m để hàm số tăng trên từng khoảng xác định b. Tìm m để hàm số tăng trên (2; ) c. Tìm m để hàm số giảm trên ( ;1) Ví dụ 11 Cho hàm số 3 2 3(2 1) (12 5) 2y x m x m x      . Tìm m để hàm số: a. Liên tục trên R b. Tăng trên khoảng (2; ) Ví dụ 12 (ĐH KTQD 1997) Cho hàm số 3 2 2 ax (2 7 7) 2( 1)(2 3)y x a a x a a        đồng biến trên [2:+ ) Dạng 3. Sử dụng chiều biến thiên để chứng minh BĐT Phương pháp Sử dụng các kiến thức sau: + Dấu hiệu để hàm số đơn điệu trên một đoạn. + f ( x) đồng biến trên [a; b] thì ( ) ( ) ()f a f x f  + f(x) nghịch biến trên [a; b] thì ( ) ( ) ( )f a f x f b  Ví dụ 1. Chứng minh các bất đẳng thức sau: 2 2 3 1 1 . tanx > sinx, 0< x < b. 1 + 1 1 , 0 < x < + 2 2 8 2 x x . cosx > 1 - , 0 d. sinx > x - , x > 0 2 6 x a x x x c x         Ví dụ 2. Chohàm số f(x) = 2sinx + tanx – 3x a. Chứng minh rằng hàm số đồng biến trên nửa khoảng 0; 2        b. Chứng minh rằng 2sin tan 3 , (0; ) 2 x x x x      Ví dụ 3 Cho hàm số ( ) tanx - xf x  a.Chứng minh hàm số đồng biến trên nửa khoảng 0; 2        b. Chứng minh 3 tan , (0; ) 3 2 x x x x      Ví dụ 3 Cho hàm số 4 ( ) tanx, x [0; ] 4 f x x      3 a. Xét chiều biến thiên của hàm số trên [0; ] 4  b. Chứng minh rằng 4 tan , [0; ] 4 x x x       CỰC TRỊ CỦA HÀM SỐ Dạng 1. Tìm cực trị của hàm số Phương pháp: Dựa vào 2 qui tắc để tìm cực trị của hàm số y = f(x) Qui tắc I. B1: Tìm tập xác định. B2: Tính f’(x). Tìm các điểm tại đó f’(x) = 0 hoặc f’(x) không xác định. B3. Lập bảng biến thiên. B4: Từ bảng biến thiên suy ra các cực trị Qui tắc II. B1: Tìm tập xác định. B2: Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu là x i là các nghiệm của nó. B3: Tính f ”(x i ) B4: Dựa vào dấu của f ” (x i ) suy ra cực trị ( f ”(x i ) > 0 thì hàm số có cực tiểu tại x i ; ( f ”(x i ) < 0 thì hàm số có cực đại tại x i ) * Chú ý: Qui tắc 2 thường dùng với hàm số lượng giác hoặc việc giải phương trình f’(x) = 0 phức tạp. Ví dụ 1. Tìm cực trị của hàm số 3 2 2 3 36 10y x x x    Qui tắc I. TXĐ: R 2 2 ' 6 6 36 ' 0 6 6 36 0 2 3 y x x y x x x x                +  -  - 54 71 + + - 0 0 2 -3 +  -  y y' x Vậy x = -3 là điểm cực đại và y cđ =71 x= 2 là điểm cực tiểu và y ct = - 54 Qui tắc II TXĐ: R 2 2 ' 6 6 36 ' 0 6 6 36 0 2 3 y x x y x x x x                y”= 12x + 6 y’’(2) = 30 > 0 nên hàm số đạt cực tiểu tại x = 2 và y ct = - 54 y’’(-3) = -30 < 0 nên hàm số đạt cực đại tại x = -3 và y cđ =71 Bài1. Tìm cực trị của các hàm số sau: 2 3 4 3 3 2 4 2 3 2 . y = 10 + 15x + 6x b. y = x 8 432 . y = x 3 24 7 d. y = x - 5x + 4 e. y = -5x + 3x - 4x + 5 a x x c x x       3 f. y = - x - 5x Bài 2. Tìm cực trị của các hàm số sau: 2 2 2 2 2 2 x+1 x 5 (x - 4) . y = b. y = c. y = x 8 1 2 5 9 x 3 3 x . y = x - 3 + e. y = f. y = x - 2 1 x 4 x a x x x x d x           Bài 3. Tìm cực trị các hàm số 4 2 2 2 3 2 2 x+1 5 - 3x . y = x 4 - x b. y = c. y = x 1 1 - x x x . y = e. y = f. y = x 3 - x 10 - x 6 a d x   Bài 4. Tìm cực trị các hàm số: . y = x - sin2x + 2 b. y = 3 - 2cosx - cos2x c. y = sinx + cosx 1 d. y = sin2x e. y = cosx + os2x f. 2 a c   y = 2sinx + cos2x víi x [0; ] Dạng 2. Xác lập hàm số khi biết cực trị Để tìm điều kiện sao cho hàm số y = f(x) đạt cực trị tại x = a B1: Tính y’ = f’(x) B2: Giải phương trình f’(a) = 0 tìm được m B3: Thử lại giá trị a có thoả mãn điều kiện đã nêu không ( vì hàm số đạt cực trị tại a thì f’(a) = 0 không kể CĐ hay CT) Ví dụ 1. Tìm m để hàm số y = x 3 – 3mx 2 + ( m - 1)x + 2 đạt cực tiểu tại x = 2 LG 2 ' 3 6 1y x mx m    . Hàm số đạt cực trị tại x = 2 thì y’(2) = 0 2 3.(2) 6 .2 1 0 1m m m       Với m = 1 ta được hàm số: y = x 3 – 3x 2 + 2 có : 2 0 ' 3 6 ' 0 2 x y x x y x           tại x = 2 hàm số đạt giá trị cực tiểu Vậy m = 1 là giá trị cần tìm Bài 1. Xác định m để hàm số 3 2 3 5 2 ®¹t cùc ®¹i t¹i x = 2y mx x x    Bài 2. Tìm m để hàm số 3 2 2 ( ) 5 cã cùc trÞ t¹i x = 1. Khi ®ã hµm sè cã C§ hay CT 3 y x mx m x     Bài 3. Tìm m để hàm số 2 1 ®¹t cùc ®¹i t¹i x = 2 x mx y x m     Bài 4. Tìm m để hàm số 3 2 2 2 2 ®¹t cùc tiÓu t¹i x = 1y x mx m x    Bài 5. Tìm các hệ số a, b, c sao cho hàm số: 3 2 ( ) axf x x bx c    đạt cực tiểu tại điểm x = 1, f(1) = -3 và đồ thị cắt trục tung tại điểm có tung độ bằng 2 Bài 6. Tìm các số thực q, p sao cho hàm số ( ) 1 q f x xp x    đạt cực đại tại điểm x = -2 và f(-2) = -2 Hướng dẫn: 2 '( ) 1 , x -1 ( 1) q f x x      + Nếu 0 th× f'(x) > 0 víi x -1. Do ®ã hµm sè lu«n ®ång biÕn . Hµm sè kh«ng cã cùc trÞ.q    + Nếu q > 0 thì: 2 2 1 2 1 '( ) 0 ( 1) 1 x q x x q f x x x q                  Lập bảng biến thiên để xem hàm đạt cực tại tại giá trị x nào. Dạng 3. Tìm điều kiện để hàm số có cực trị Bài toán: ‘Tìm m để hàm số có cực trị và cực trị thoả mãn một tính chất nào đó.’ Phương pháp B1: Tìm m để hàm số có cực trị. B2: Vận dụng các kiến thức khác Chú ý:  Hàm số 3 2 ax ( 0)y bx cx d a     có cực trị khi và chỉ khi phương trình y’ = 0 có hai nghiệm phân biệt. 5 Cc tr ca hm phõn thc ( ) ( ) p x y Q x . Gi s x 0 l im cc tr ca y, thỡ giỏ tr ca y(x 0 ) cú th c tớnh bng hai cỏch: hoc 0 0 0 0 0 0 ( ) '( ) ( ) hoặc y(x ) ( ) '( ) P x P x y x Q x Q x Vớ d . Xỏc nh m cỏc hm s sau cú cc i v cc tiu 2 3 2 1 x 2 4 . y = ( 6) 1 . y = 3 2 mx m a x mx m x b x Hng dn. a. TX: R 2 ' 2 6y x mx m . hm s cú cc tr thỡ phng trỡnh: 2 2 6 0 có 2 nghiệm phân biệtx mx m 2 3 ' 6 0 2 m m m m b. TX: \ 2 2 2 2 2 2 (2 )( 2) ( 2 4) 4 4 4 ' ( 2) ( 2) àm số có cực đại, cực tiểu khi ' 0 ó hai nghiệm phân biệt khác -2 4 4 4 0 ' 0 4 4 4 0 0 4 8 4 4 0 0 x m x x mx m x x m y x x H y c x x m m m m m Bi 1. Tỡm m hm s 3 2 3 2. Với giá trị nào của m thì hàm số có CĐ, CT?y x mx Bi 2. Tỡm m hm sụ 2 3 ( 1) 1x m m x m y x m luụn cú cc i v cc tiu. Bi 3. Cho hm s 3 2 2 ã 12 13y x x . Tỡm a hm s cú cc i, cc tiu v cỏc im cc tiu ca th cỏch u trc tung. Bi 4. Hm s 3 2 2( 1) 4 1 3 m y x m x mx . Tỡm m hm s cú cc i cc tiu. Bi 5. Cho hm 2 1 x mx y x . Tỡm m hm s cú cc tr Bi 6. Cho hm s 2 2 4 2 x mx m y x . Xỏc nh m hm s cú cc i v cc tiu. Dng 4. Tỡm tham s cỏc cc tr tho món tớnh cht cho trc. Phng phỏp + Tỡm iu kin hm s cú cc tr + Vn dng cỏc kin thc v tam thc, h thc Viet tho món tớnh cht. Vớ d . 6 Bài1. Tìm cực trị của các hàm số sau: 2 3 4 3 3 2 4 2 3 2 . y = 10 + 15x + 6x b. y = x 8 432 . y = x 3 24 7 d. y = x - 5x + 4 e. y = -5x + 3x - 4x + 5 a x x c x x       3 f. y = - x - 5x Bài 2. Tìm cực trị của các hàm số sau: 2 2 2 2 2 2 x+1 x 5 (x - 4) . y = b. y = c. y = x 8 1 2 5 9 x 3 3 x . y = x - 3 + e. y = f. y = x - 2 1 x 4 x a x x x x d x           Bài 3. Tìm cực trị các hàm số 2 2 2 3 2 2 x+1 5 - 3x . y = x 4 - x b. y = c. y = x 1 1 - x x x . y = e. y = f. y = x 3 - x 10 - x 6 a d x   Bài 4. Tìm cực trị các hàm số: . y = x - sin2x + 2 b. y = 3 - 2cosx - cos2x c. y = sinx + cosx 1 d. y = sin2x e. y = cosx + os2x f. 2 a c   y = 2sinx + cos2x víi x [0; ] Bài 5. Xác định m để hàm số 3 2 3 5 2 ®¹t cùc ®¹i t¹i x = 2y mx x x    Bài 6. Tìm m để hàm số 3 2 2 ( ) 5 cã cùc trÞ t¹i x = 1. Khi ®ã hµm sè cã C§ hay CT 3 y x mx m x     Bài 7. Tìm m để hàm số 2 1 ®¹t cùc ®¹i t¹i x = 2 x mx y x m     Bài 8. Tìm m để hàm số 3 2 2 2 2 ®¹t cùc tiÓu t¹i x = 1y x mx m x    Bài 9. Tìm các hệ số a, b, c sao cho hàm số: 3 2 ( ) axf x x bx c    đạt cực tiểu tại điểm x = 1, f(1) = -3 và đồ thị cắt trục tung tại điểm có tung độ bằng 2 Bài 10. Tìm các số thực q, p sao cho hàm số ( ) 1 q f x xp x    đạt cực đại tại điểm x = -2 và f(-2) = -2 Bài 11. Tìm m để hàm số 3 2 3 2. Víi gi¸ trÞ nµo cña m th× hµm sè cã C§, CT?y x mx   Bài 12. Tìm m để hàm sô 2 3 ( 1) 1x m m x m y x m       luôn có cực đại và cực tiểu. Bài 13. Cho hàm số 3 2 2 · 12 13y x x    . Tìm a để hàm số có cực đại, cực tiểu và các điểm cực tiểu của đồ thị cách đều trục tung. Bài 14. Hàm số 3 2 2( 1) 4 1 3 m y x m x mx     . Tìm m để hàm số có cực đại cực tiểu. Bài 15. Cho hàm 2 1 x mx y x    . Tìm m để hàm số có cực trị Bài 16. Cho hàm số 2 2 4 2 x mx m y x      . Xác định m để hàm số có cực đại và cực tiểu.  GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ DẠNG 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 7  Để tìm GTLN, GTNN của hàm số y = f(x) trên   ;a b : +B1: Tính đạo hàm của hàm số y’ = f’(x) + B2: Xét dấu đạo hàm f’(x), lập bảng biến thiên Trong đó tại x 0 thì f’(x 0 ) bằng 0 hoặc khơng xác định  Để tìm GTLN, GTNN của hàm số y = f(x) trên [a; b]: B1: Tìm các giá trò x i   ;a b (i = 1, 2, , n) làm cho đạo hàm bằng 0 hoặc không xác đònh . B2: Tính 1 2 ( ), ( ), ( ), , ( ), ( ) n f a f x f x f x f b B3: GTLN = max{ 1 2 ( ), ( ), ( ), , ( ), ( ) n f a f x f x f x f b } GTNN = Min{ 1 2 ( ), ( ), ( ), , ( ), ( ) n f a f x f x f x f b } Ví dụ 1. Tìm giá trị lớn nhất và nhỏ nhất của hàm số 1 y x x   trên khoảng (0; ) Hướng dẫn: Dễ thầy h àm số liên tục trên (0; ) 2 2 2 2 1 1 ' 1 ' 0 1 0 1 x y y x x x x             . Dễ thấy 1 (0; )x     Vậy Minf(x) = 2 khi x = 1 và hàm số khơng có giá trị lớn nhất. Ví dụ 2. Tính GTLN, GTNN của hàm số 3 2 2 3 4 3 x y x x    trên đoạn [-4; 0] Hướng dẫn Hàm số liên tục trên [-4; 0], 2 2 [-4;0] [-4;0] 1 '( ) 4 3 '( ) 0 4 3 0 3 16 16 ( 4) , ( 3) 4, ( 1) , (0) 4 3 3 Ëy Max 4 x = -3 hc x = 0 16 Min khi x = -4 hc x = -1 3 x x x f x x x f x x x x f f f f V y khi y                                   Bài 1. Tìm GTLN, GTNN của hàm số (nếu có): 3 2 3 4 2 3 2 . f(x) = x 3 9 1 trªn [-4; 4] b. f(x) = x 5 4 trªn ®o¹n [-3; 1] c. f(x) = x 8 16 trªn ®o¹n [-1; 3] d. f(x) = x 3 9 7 trªn ®o¹n [-4; 3] a x x x x x x           Bài 2. Tìm GTLN, GTNN của hàm số (nếu có): 2 x 1 . f(x) = trªn nưa kho¶ng (-2; 4] b. f(x) = x +2 + trªn kho¶ng (1; + ) x + 2 x- 1 c. f(x) = x 1 - x d. f(x) a  1 3 = trªn kho¶ng ( ; ) cosx 2 2    TIỆM CẬN CỦA HÀM SỐ I. Kiến thức cần nắm Cho hàm số y = f(x) có đồ thị là (C)  y = y 0 là tiệm cận ngang của nếu một trong hai điệu kiên sau được thoả mãn: 0 0 lim ( ) ,hc lim ( ) x x f x y f x y     G T L N - + y y ' b x 0 a x G T NN + - y y ' b x 0 a x +  +  0 2 + - y y' +  1 0 x 8  x = x 0 là tiệm cận đứng của (C) nếu một trong các điều kiện sau đựơc thoả mãn: 0 0 0 0 lim , lim , lim , lim x x x x x x x x                  Đường thẳng y = ax + b ( 0a  ) được gọi là tiệm cận xiên nếu một trong hai điều kiện sau thoả mãn: lim [ ( ) (ax + b)] = 0 hoÆc lim [ ( ) (ax+b)]=0 x x f x f x     II. Các dạng toán Dạng 1: Tiệm cận hàm số hữu tỉ ( ) ( ) P x y Q x  Phương pháp  Tiệm cận đứng: Nghiệm của mẫu không phải là nghiệm của tử cho phép xác định tiệm cận đứng.  Tiệm cận ngang, xiên: + Det(P(x)) < Det (Q(x)): Tiệm cận ngang y = 0 + Det(P(x)) = Det(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu. + Det (P(x)) = Det(Q(x)) + 1: Không có tiệm cận ngang; Tiệm cận xiên được xác định bằng cách phân tích hàm số thành dạng: f(x) = ax + b + ( )x  với lim ( ) 0 x x    thì y = ax + b là tiệm cận xiên. Ví dụ 1. Tìm các tiệm cận của các hàm số: 2 2 2x- 1 x 7 x + 2 . y = b. y = c. y = x + 2 3 x 1 x a x     Hướng dẫn a. Ta thấy 2 2 2 1 2 1 lim ; lim 2 2 x x x x x x             nên đường thẳng x= 2 là tiệm cận đứng. Vì 1 2 2 1 lim lim 2 2 2 1 x x x x x x         nên y = 2 là tiệm cận ngang của đồ thị hàm số. b. + 2 3 7 lim 3 x x x x        . Nên x = 3 là tiệm cận đứng của đồ thị hàm số. + 1 2 3 y x x     . Ta thấy 1 lim[y - (x + 2)]=lim 0 3 x x x      Vậy y = x+ 2 là tiệm cân xiên của đồ thị hàm số. c. Ta thấy 2 1 2 lim . 1 x x x        Nên x = 1 là đường tiệm cận đứng. + 2 1 2 lim 1 x x x       . Nên x = -1 là tiệm cận đứng. + 2 2 2 1 2 2 lim 0 1 1 1 x x x x x x        . Nên y = 0 là tiệm cận ngang của đồ thị hàm số. Dạng 2. Tiệm cận của hàm vô tỉ 2 ax ( 0)y bx c a    Phương pháp Ta phân tích 2 ax ( ) 2 b bx c a x x a       Với lim ( ) 0 x x    khi đó ( ) 2 b y a x a   có tiệm cận xiên bên phải Với lim ( ) 0 x x    khi đó ( ) 2 b y a x a    có tiệm cận xiên bên tr ái VÝ dô 9 T×m tiÖm cËn cña hµm sè: 2 9 18 20y x x   Híng dÉn 2 9( 2) 6y x   10 Các tính giới hạn vô cực của hàm số ( ) ( ) f x y g x lim ( ) 0 f x x x lim ( ) 0 g x x x Dấu của g(x) ( ) lim ( ) 0 f x x x g x L Tuỳ ý 0 + + L > 0 0 - - - + L < 0 0 + - Bài 1. Tìm tiệm cận các hàm số sau: 2x - 1 3 - 2x 5 -4 . y = b. y = c. y = d. y = x + 2 3x + 1 2 - 3x x + 1 x+ 1 1 e. y = f. y = 4 + 2x + 1 x- 2 a -x + 3 4 - x g. y = h. y = x 3x + 1 Bài 2. Tìm tiệm cận của các hàm số sau: 2 2 2 2 2 2 2 2 x 12 27 x 2 x 3 2- x . y = b. y = c. y = d. y = 4 5 ( 1) 4 x 4 3 1 x 2 . y = 2x -1 + f. y = x 3 x x x a x x x x x x e x 3 2 2 2 1 2x g. y = x- 3 + h. y = 2(x- 1) 1 x x Bài 3. Tìm tiệm cận các hàm số 2 2 x . y = 1 x+ 3 b. y = x+ 1 1 . 4 x a x x c y x Bài 4. Xác định m để đồ thị hàm số: 2 2 3 2( 2) 1 x y x m x m có đúng 2 tiệm cận đứng. Bài 5. Tính diện tích của tam giác tạo bởi tiệm cận xiên của đồ thị tạo với hai trục toạ độ của các hàm số: 2 2 3x 1 -3x 4 . y = b. y = 1 2 x x a x x Bài 6.(ĐHSP 2000). Tìm m để tiệm cận xiên của đồ thị hàm số 2 2( 1) 4 3 2 x m x m y x tạo với hai trục toạ độ một tam giác có diện tích bằng 8 (đvdt) Bài 7. Cho hàm số: 2 (3 2) 3 3 1 x x m m y x (1) a. Tìm m để tiệm cận xiên của đồ thị đi qua điểm (4; 3)A b. Tìm m để đờng tiệm cận xiên của (1) cắt Parabol 2 y x tại hai điểm phân biệt. 2 -2 -4 -5 5 2 -2 -4 -5 5 2 -2 -4 -5 5 . Oy là trục đối xứng. Nếu hàm số có ba cực trị trị chúng tạo thành một tam giác cân. Dạng toán: Khảo sát và vẽ đồ thị của hàm số Ví dụ 1 (TNTHPT-2008) Cho. trên đờng cong y = x 2 có hai điểm mà (C m ) không đi qua với mọ m. 18 CHUYÊN ĐỀ : PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1.

Ngày đăng: 22/01/2014, 01:20

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan