1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao

69 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 69
Dung lượng 3,6 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ HỒNG THIỆN TÂM PHÂN TÍCH ỨNG XỬ DẦM COMPOSITE SỬ DỤNG LÝ THUYẾT BIẾN DẠNG CẮT BẬC CAO NGÀNH: KỸ THUẬT XÂY DỰNG CƠNG TRÌNH DÂN DỤNG VÀ CÔNG NGHIỆP– 60580208 S K C0 Tp Hồ Chí Minh, tháng 10/2015 TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ HỒNG THIỆN TÂM PHÂN TÍCH ỨNG XỬ DẦM COMPOSITE SỬ DỤNG LÝ THUYẾT BIẾN DẠNG CẮT BẬC CAO NGÀNH: KỸ THUẬT XÂY DỰNG CƠNG TRÌNH DÂN DỤNG VÀ CÔNG NGHIỆP– 60580208 Hướng dẫn khoa học: PGS TS NGUYỄN TRUNG KIÊN Tp Hồ Chí Minh, tháng 10/2015 LỜI CAM ĐOAN Tơi cam đoan cơng trình nghiên cứu Các số liệu, kết nêu luận văn trung thực chƣa đƣợc cơng bố cơng trình khác Tp Hồ Chí Minh, ngày … tháng … năm 2015 Hồng Thiện Tâm ii LỜI CẢM ƠN Tôi xin trân trọng cảm ơn PGS TS Nguyễn Trung Kiên tận tình giúp đỡ, hƣớng dẫn cung cấp thông tin cần thiết để tơi hồn thành luận văn thạc sĩ Tôi xin chân thành cảm ơn thầy cô giáo Khoa Xây Dựng Cơ Học Ứng Dụng trƣờng Đại Học Sƣ Phạm Kỹ Thuật Thành Phố Hồ Chí Minh Xin cảm ơn tất ngƣời thân gia đình giúp đỡ tạo điều kiện thuận lợi để tơi hồn thành luận văn Vì kiến thức thời gian thực luận văn thạc sĩ có hạn nên khơng tránh khỏi hạn chế thiếu sót Tơi mong đƣợc đóng góp quý thầy cô giáo, bạn bè đồng nghiệp để luận văn đƣợc hoàn thiện Xin chân thành cảm ơn Tp Hồ Chí Minh, ngày … tháng … năm 2015 Hồng Thiện Tâm iii TĨM TẮT Luận văn đề xuất phƣơng pháp phân tích tần số dao động lực ổn định dầm composite sử dụng lý thuyết biến dạng cắt bậc cao Phƣơng trình chuyển động đƣợc rút từ phƣơng trình Lagrange Lý thuyết sử dụng lý thuyết biến dạng cắt bậc cao lý thuyết Quasi-3D với nhiều điều kiện biên khác Kết số luận văn phân tích tần số dao động lực ổn định tới hạn đƣợc so sánh với kết tác giả nghiên cứu khác thu đƣợc cách sử dụng lý thuyết biến dạng cắt bậc lý thuyết biến dạng cắt bậc cao khác, bên cạnh phƣơng pháp giải giải tích mơ hình phần tử hữu hạn Phân tích hiệu ứng thay đổi góc xoay hƣớng sợi, tỉ lệ chiều dài chiều sâu tiết diện dầm (L/h), tỉ lệ module đàn hồi lực ổn định tới hạn iv MỤC LỤC Trang Tựa Trang QUYẾT ĐỊNH GIAO ĐỀ TÀI LÝ LỊCH CÁ NHÂN i LỜI CAM ĐOAN ii LỜI CẢM ƠN iii TÓM TẮT iv MỤC LỤC v DANH SÁCH CÁC HÌNH vii DANH SÁCH CÁC BẢNG viii DANH SÁCH CÁC KÝ HIỆU x CHƢƠNG 1:TỔNG QUAN 1.1 Tổng quan 1.2 Vật liệu composite .2 1.3 Tổng quan tình hình nghiên cứu 1.4 Mục tiêu đề tài 1.5 Phƣơng pháp nghiên cứu CHƢƠNG 2: PHÂN TÍCH DAO ĐỘNG VÀ ỔN ĐỊNH CỦA DẦM COMPOSITE SỬ DỤNG LÝ THUYẾT BIẾN DẠNG CẮT BẬC CAO 2.1 Nguyên tắc chuyển trục tọa độ .8 2.2 Thuộc tính vật liệu 10 2.2.1 Ma trận độ cứng .10 2.3 Lý thuyết biến dạng cắt bậc cao 12 2.3.1 Chuyển vị biến dạng .12 2.3.2 Phƣơng trình ứng xử .13 2.3.3 Động học 13 2.3.4 Phƣơng trình Lagrange 14 v 2.3.5 Lời giải giải tích 15 2.3.6 Áp dụng điều kiện biên 17 CHƢƠNG 3: PHÂN TÍCH DAO ĐỘNG VÀ ỔN ĐỊNH CỦA DẦM COMPOSITE SỬ DỤNG LÝ THUYẾT QUASI-3D 19 3.1 Lý thuyết Quasi -3D .19 3.2 Phƣơng trình ứng xử 19 3.3 Phƣơng trình động học 19 3.4 Phƣơng trình biến phân 20 3.5 Lời giải giải tích .24 Chƣơng 4:VÍ DỤ SỐ 26 4.1 Tổng quát 26 4.2 Bài toán 1: Tính tốn tần số dao động dầm composite .27 4.3 Bài tốn 2: Tính tốn lực ổn định dầm composite tiết diện chữ nhật lý thuyết biến dạng cắt bậc cao sử dụng nhân tử Lagrange .28 4.4 Bài toán 3: tần số dao động lớp sợi đối xứng dầm composite với hƣớng sợi thay đổi điều kiện biên khác 29 4.5 Bài toán 4: Lực ổn định tới hạn với tỉ số Module đàn hồi thay đổi 33 4.6 Bài toán 5: Lực ổn định tới hạn với tỉ số L/h thay đổi .37 4.7 Vật liệu công thức trực giao 38 Chƣơng 5: KẾT LUẬN – KIẾN NGHỊ 40 5.1 Kết luận 40 5.2 Kiến Nghị 40 TÀI LIỆU THAM KHẢO 41 PHỤ LỤC 44 vi DANH SÁCH CÁC HÌNH HÌNH TRANG Hình 1.1: Ứng dụng vật liệu composite vào lĩnh vực hàng khơng vũ trụ Hình 1.2: Ứng dụng vật liệu composite vào lĩnh vực vận tải biển Hình 1.3: Ứng dụng vật liệu composite vào lĩnh vực lƣợng Hình 1.4: Ứng dụng vật liệu composite xây dựng Hình 1.5 Vật liệu composite cấu tạo từ lớp sợi Hình 1.6 Vật liệu composite từ nhiều phân tử Hình 1.7: Vật liệu Sandwich Panel Hình 1.8: Dầm composite cấu tạo từ lớp sợi Hình 1.9 Ứng xử vật liệu Hình 1.10 Trục toạ độ tổng thể địa phƣơng composite Hình 2.1 Vật liệu composite với hệ trục tọa độ tổng thể địa phƣơng Hình 2.2 Thuộc tính vật liệu trực hƣớng 10 Hình 2.3 Mơ hình chƣa biến dạng biến dạng theo lý thuyết biến dạng cắt bậc bậc cao 12 Hình 2.4 Mơ hình chƣa biến dạng biến dạng theo lý thuyết biến dạng cắt bậc bậc cao 13 Hình 2.5 Kích thƣớc hình học dầm composite laminate 13 Hình 3.1 Kích thƣớc hình học dầm composite laminate 20 Hình 4.1 Sự biến đổi lực ổn định tới hạn với lớp sợi đối xứng hƣớng sợi thay đổi điều kiện biên khác L/h = 15 31 Hình 4.2 Sự biến đổi lực ổn định tới hạn với lớp sợi đối xứng hƣớng sợi thay đổi điều kiện biên khác L/h = 31 Hình 4.3 Sự biến đổi lực ổn định tới hạn với lớp sợi đối xứng hƣớng sợi thay đổi điều kiện biên khác L/h = 10 32 Hình 4.4 Sự biến đổi lực ổn định tới hạn với lớp sợi đối xứng hƣớng sợi thay đổi điều kiện biên khác L/h = 20 32 vii Hình 4.5 Sự biến đổi lực ổn định tới hạn với lớp sợi đối xứng hƣớng sợi thay đổi điều kiện biên khác L/h = 50 33 Hình 4.6 Đồ thị hiệu ứng vật liệu không đẳng hƣớng lên lực ổn định tới hạn vật liệu có góc sợi đối xứng khơng đối xứng L/h=5 35 Hình 4.7 Đồ thị hiệu ứng vật liệu không đẳng hƣớng lên lực ổn định tới hạn vật liệu có góc sợi đối xứng không đối xứng L/h=10 35 Hình 4.8 Đồ thị hiệu ứng vật liệu không đẳng hƣớng lên lực ổn định tới hạn vật liệu có góc sợi đối xứng khơng đối xứng L/h=50 36 Hình 4.9 Đồ thị hiệu ứng thay đổi L/h lên lực ổn định tới hạn vật liệu 37 viii DANH SÁCH CÁC BẢNG BẢNG TRANG Bảng 2.1: Bảng điều kiện biên dầm theo lý thuyết biến dạng cắt bậc cao 17 Bảng 3.1: Bảng điều kiện biên dầm theo lý thuyết Quasi-3D 24 Bảng 4.1: Hiệu ứng hệ số chiều dài nhip - chiều cao tiết diện lên tần số dao động tự nhiên không thứ nguyên dầm composite lớp sợi crossply đối xứng không đối xứng với điều kiện biên tựa đơn 27 Bảng 4.2: Hiệu ứng hệ số chiều dài nhip - chiều cao tiết diện lên lực ổn định tới hạn không thứ nguyên dầm composite lớp sợi crossply đối xứng không đối xứng với điều kiện biên tựa đơn 28 Bảng 4.3:Tần số dao động tự nhiên không thứ nguyên dầm composite lớp sợi đối xứng, góc sợi thay đổi 30 Bảng 4.4:Tần số dao động tự nhiên không thứ nguyên dầm composite với điều kiện biên tựa đơn(vật liệu II III với E1/E2=40) 34 ix [20]Khdeir AA, Reddy JN Free vibration of cross-ply laminated beams with arbitrary boundary conditions Int J Mech Sci 1994:32(12):1971-80 [21]Khdeir AA, Reddy JN Buckling of cross-ply laminated beams with arbitrary boundary conditions.Compos Struct 1997;37(1):1-3 [22]Aydogdu M Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method.Int J Mech Sci 2005;47(11):1940-55 [23]Aydogdu M Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz Method.Compos Sci Technol 2006;66(10):1248-55 [24]Chandrashekhara K, Bangera K Free vibration of composite beams using a refine shear flexible beam element Compos Struct1992;43(4):719-27 [25]Zhen W, Wanji C An assessment of several displacement – based theries for the vibration and stability analysis of laminated composite and sandwich beams Compos Struct 2008;84(4):337-49 [26] Fiorenzo A Fazzolari, Erasmo Carrera.Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core Journal of Sound and Vibration, Volume 333, Issue 5, 28 February 2014, Pages 1485–1508 [27]Chandrashekhara K, Krishnamurthy K,Roy S Free vibration of composite beams Including rotary inertia and shear deformation Compos Struct 1990;14(4):269-79 [28]Krishnaswamy S, Chandrashekhara K,WU WZB Analytical solutions to vibration of generally layered composite beams J Sound Vib 1992;159(1):85-99 [29]Chen WQ, Lv CF, Bian ZG Fre vibration analysis of generally laminated beams via state-space-based differential quadrature Compos Struct 2004;63(34):417-25 43 PHỤ LỤC Code matlab tính tốn tốn clear all; clc syms lamda N0 z format long h = 0.1 ; % m S = 15; %L/h L = S*h ; %m b = %m0 E1 = 144.9 * 10^6 ; %GPA=> KN/m2 E2 = 9.65 *10^6; %GPA=> KN/m2 E3 = E2 G12 = 4.14*10^6 ; %GPa => KN/m2 G13 = G12; %GPa => KN/m2 G23 = 3.45*10^6 ; %GPa => KN/m2 G23 = 0.5*E2 v12 = 0.25; v13 =v12; v31 = v13*(E3/E1); v21 =v12*(E2/E1); v23 = v12; v32 = v23*(E3/E2); Ro = 1389 * 10^-2; % Kg/m3 => KN/m3 %a =input('nhap vao gia tri ti so tt1 = ') %% Option C - C u=[0:15:90]; w1=zeros(length(u),1) ww1=zeros(length(u),1) for j = 1:length(u) tt1 =u(j)*pi/180; tt2 = -u(j)*pi/180; teta=[tt1 tt2] z1 = -h/2; z2 = +h/2; %% %Ham f bac cao f = z*(+(5/4)-(5/3)*(z/h)^2); g = diff(f,z) gp = diff(g,z) %% % Q11 Q12 Q13 Q14 Q15 Q16 Q22 Q23 Q24 Q25 = = = = = = = = = = (1-v23*v32)*E1/(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13); (v12+v32*v13)*E2/(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13); (v13+v21*v23)*E3/(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13); 0; 0; 0; E2*(1-v13*v31)/(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13); E2*(v32+v12*v31)/(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13); 0; 0; 44 Q26 = 0; Q33 = E3*(1-v12*v21)/(1-v12*v21-v23*v32-v31*v13-2*v21*v32*v13); Q34 = 0; Q35 = 0; Q36 = Q44 = G23; Q45 = 0; Q46 = Q55 = G13; Q56 = 0; Q66 = G12; %syms m n tt1 E1 v12 v21 E2 G12 G13 G23 Q11 Q12 Q13 Q14 Q15 Q16 Q22 Q23 Q24 Q25 Q26 Q33 Q34 Q35 Q36 Q44 Q45 Q46 Q55 Q56 Q66 Q = [Q11 Q12 Q13 Q14 Q15 Q16; Q12 Q22 Q23 Q24 Q25 Q26; Q13 Q23 Q33 Q34 Q35 Q36; Q14 Q24 Q34 Q44 Q45 Q46; Q15 Q25 Q35 Q45 Q55 Q56; Q16 Q26 Q36 Q46 Q56 Q66]; for i = 1: length(teta) m = cos(teta(i)); n = sin(teta(i)); Qp_tt{i}(1,1) = Q11*m^4 + 2*(Q12+2*Q66)*n^2*m^2+Q22*n^4; Qp_tt{i}(1,2) = (Q11+Q22-4*Q66)*m^2*n^2+Q12*(m^4+n^4); Qp_tt{i}(2,2) =Q11*n^4+2*(Q12+2*Q66)*m^2*n^2+Q22*m^4; Qp_tt{i}(1,3) =Q13*m^2+Q23*n^2; Qp_tt{i}(1,6) =(Q11-Q12-2*Q66)*n*m^3+(Q12-Q22+2*Q66)*n^3*m; Qp_tt{i}(2,6) =(Q11-Q12-2*Q66)*n^3*m+(Q12-Q22+2*Q66)*n*m^3; Qp_tt{i}(6,6) =(Q11+Q22-2*Q12-2*Q66)*n^2*m^2+Q66*(n^4+m^4); Qp_tt{i}(4,4) =Q44*m^2+Q55*n^2; Qp_tt{i}(4,5) =(Q55-Q44)*n*m; Qp_tt{i}(5,5) =Q55*m^2+Q44*n^2; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% a = Axx=eval(int(Qp_tt{a}(1,1),z,-h/2,0)+int(Qp_tt{a+1}(1,1),z,0,h/2)); Bxx=eval(int(z*Qp_tt{a}(1,1),z,h/2,0)+int(z*Qp_tt{a+1}(1,1),z,0,h/2)); Dxx=eval(int(z^2*Qp_tt{a}(1,1),z,h/2,0)+int(z^2*Qp_tt{a+1}(1,1),z,0,h/2)); Bs=eval(int(f*Qp_tt{a}(1,1),z,h/2,0)+int(f*Qp_tt{a+1}(1,1),z,0,h/2)); Ds=eval(int(z*f*Qp_tt{a}(1,1),z,h/2,0)+int(z*f*Qp_tt{a+1}(1,1),z,0,h/2)); Hs=eval(int(f^2*Qp_tt{a}(1,1),z,h/2,0)+int(f^2*Qp_tt{a+1}(1,1),z,0,h/2)); Es = eval(int(f*gp*Qp_tt{a}(1,3),z,h/2,0)+int(f*gp*Qp_tt{a+1}(1,3),z,0,h/2)); Ts = eval(int(gp*Qp_tt{a}(1,3),z,h/2,0)+int(gp*Qp_tt{a+1}(1,3),z,0,h/2)); Ms = eval(int(z*gp*Qp_tt{a}(1,3),z,h/2,0)+int(z*gp*Qp_tt{a+1}(1,3),z,0,h/2)); Ns_11 = eval(int(gp^2*Qp_tt{a}(1,1),z,h/2,0)+int(gp^2*Qp_tt{a+1}(1,1),z,0,h/2)); Ns_13 = eval(int(gp^2*Qp_tt{a}(1,3),z,h/2,0)+int(gp^2*Qp_tt{a+1}(1,3),z,0,h/2)); 45 As=eval(int((diff(f,z))^2*Qp_tt{a}(5,5),z,h/2,0)+int((diff(f,z))^2*Qp_tt{a+1}(5,5),z,0,h/2)); I0=eval(int(Ro,z,-h/2,h/2)); I1=eval(int(z*Ro,z,-h/2,h/2)); I2=eval(int(z^2*Ro,z,-h/2,h/2)); %J1=eval(int(f*Ro,z,-h/2,0)+int(f*Ro,z,0,h/2)); J1=eval(int(f*Ro,z,-h/2,h/2)); %J2=eval(int(z*f*Ro,z,-h/2,0)+int(z*f*Ro,z,0,h/2)); J2=eval(int(z*f*Ro,z,-h/2,h/2)); K2=eval(int(f^2*Ro,z,-h/2,h/2)); N1 = eval(int(g*Ro,z,-h/2,h/2)); N2 = eval(int(g^2*Ro,z,-h/2,h/2)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% % N1=[6 10 12 14 16 18]; N=12; %% Boundary conditions BC='HS'; %CC,CS,CF switch BC case 'SS' Nb=4; Ks=BCSS(N,L,Nb); case 'HS' Nb=5; Ks=BCHS(N,L,Nb); case 'HH' Nb=6; Ks=BCHH(N,L,Nb); case 'CF' Nb=5; Ks=BCCF(N,L,Nb); case 'CS' Nb=7; Ks=BCCS(N,L,Nb); case 'CH' Nb=8; Ks=BCCH(N,L,Nb); case 'CC' Nb=10; Ks=BCCC(N,L,Nb); end Kl=LinearMatrixK(N,L,Axx,Bxx,Dxx,Bs,Ds,Hs,As,Es,Ts,Ms,Ns_11,Ns_13,Nb); M=MatrixM(N,L,I0,I1,I2,J1,J2,K2,N1,N2,Nb); Kg=GeoMatrixK(N,L,Nb); %% Vibration omega=solve(det((Kl+Ks)-lamda*(M))); omega_ncc =sort(double(sqrt(omega).*L^2*sqrt(Ro/E1)./h)) omega_ncc(omega_ncc

Ngày đăng: 30/11/2021, 22:38

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Trung-Kien Nguyen. Vibration and buckling analysis of Functionally graded sandwich beams by a new higher-order shear deformation theory, Composite Part B 76(2015),273-285 Sách, tạp chí
Tiêu đề: Vibration and buckling analysis of Functionally graded sandwich beams by a new higher-order shear deformation theory
Tác giả: Trung-Kien Nguyen. Vibration and buckling analysis of Functionally graded sandwich beams by a new higher-order shear deformation theory, Composite Part B 76
Năm: 2015
[3]Vo. Static behavior of composite beams using various refined shear deformation theories,Composite Structure 94 (2012) 2513-2522 Sách, tạp chí
Tiêu đề: Static behavior of composite beams using various refined shear deformation theories
[4]Vo. Vibration and buckling of composite beams using refined shear deformation theory. International journal of Mechanical Sciences 62(2012) 67-76 Sách, tạp chí
Tiêu đề: Vibration and buckling of composite beams using refined shear deformation theory
[6]Jun L, Hongxing H. Free vibration analyses of axially loaded laminated composite beams based on higher-order shear deformation theory, Meccanica 2011;46:1299-317 Sách, tạp chí
Tiêu đề: Free vibration analyses of axially loaded laminated composite beams based on higher-order shear deformation theory
[9] Neves AMA, Ferreira AJM, Carrera E, Roque CMC, Cinefra M, Jorge RMN, et al. A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos Part B: Eng 2012;43(2):711-25 Sách, tạp chí
Tiêu đề: A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates
[10] Neves AMA, Ferreira AJM, Carrera E, Roque CMC, Cinefra M, Jorge RMN, et al. A quasi-hyperbolic shear deformation theory for the static and free vibration analysis of functionally greade plates. Compos Struct 2012; 94(5):1814- 25 Sách, tạp chí
Tiêu đề: A quasi-hyperbolic shear deformation theory for the static and free vibration analysis of functionally greade plates
[11] Neves AMA, Ferreira AJM, Carrera E, Roque CMC, Cinefra M, Jorge RMN, et al. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded paltes using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos Part B Eng 2013;44(1):657-74 Sách, tạp chí
Tiêu đề: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded paltes using a quasi-3D higher-order shear deformation theory and a meshless technique
[12] Mantary JL,Soares CG. Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates. Compos Struct 2012;94(8):2561-75 Sách, tạp chí
Tiêu đề: Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates
[13] Thai H-T, Vo TP, Bui TQ, Nguyen T-K.A quasi – 3D hyperbolic shear deformation theory for functionally gradedplates. Acta Mech 2013: 1-14 Sách, tạp chí
Tiêu đề: A quasi – 3D hyperbolic shear deformation theory for functionally gradedplates
[14] Thai H-T Choi D-H. A simple quasi-3D sinusoidal shera deformation theory for functionally graded plates. Compos Struct 2013;99(0): 172-80 Sách, tạp chí
Tiêu đề: A simple quasi-3D sinusoidal shera deformation theory for functionally graded plates
[15] Thai H-T Choi D-H. Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates. Compos Part B: Eng 2014:56(0):705-16 Sách, tạp chí
Tiêu đề: Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates
[16]Mashat DS, Carrera E, Zenkour AM, Khateeb SAA, Filippi M. Free vibraion of FGM Layered beams by various theories and finite elements. Compos Part B: Eng 2014:59(0):269-78 Sách, tạp chí
Tiêu đề: Free vibraion of FGM Layered beams by various theories and finite elements
[17]Reddy JN. A simple higher-order theory for laminated composite plates. J appl Mech 1984;51(4):745-52 Sách, tạp chí
Tiêu đề: A simple higher-order theory for laminated composite plates
[19]Thai H-T, Vo TP. Bending and free vibration beam theories.Int J Mech Sci 2012:62(1):57-66 Sách, tạp chí
Tiêu đề: Bending and free vibration beam theories
[20]Khdeir AA, Reddy JN. Free vibration of cross-ply laminated beams with arbitrary boundary conditions..Int J Mech Sci 1994:32(12):1971-80 Sách, tạp chí
Tiêu đề: Free vibration of cross-ply laminated beams with arbitrary boundary conditions
[21]Khdeir AA, Reddy JN. Buckling of cross-ply laminated beams with arbitrary boundary conditions.Compos Struct 1997;37(1):1-3 Sách, tạp chí
Tiêu đề: Buckling of cross-ply laminated beams with arbitrary boundary conditions
[22]Aydogdu M. Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method.Int J Mech Sci 2005;47(11):1940-55 Sách, tạp chí
Tiêu đề: Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method
[23]Aydogdu M. Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz Method.Compos Sci Technol 2006;66(10):1248-55 Sách, tạp chí
Tiêu đề: Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz Method
[24]Chandrashekhara K, Bangera K. Free vibration of composite beams using a refine shear flexible beam element. Compos Struct1992;43(4):719-27 Sách, tạp chí
Tiêu đề: Free vibration of composite beams using a refine shear flexible beam element
[25]Zhen W, Wanji C. An assessment of several displacement – based theries for the vibration and stability analysis of laminated composite and sandwich beams.Compos Struct 2008;84(4):337-49 Sách, tạp chí
Tiêu đề: An assessment of several displacement – based theries for the vibration and stability analysis of laminated composite and sandwich beams

HÌNH ẢNH LIÊN QUAN

Hình 1.1 Ứng dụng của vật liệu composite vào lĩnh vực hàng không vũ trụ [2] - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.1 Ứng dụng của vật liệu composite vào lĩnh vực hàng không vũ trụ [2] (Trang 13)
Hình 1.2 Ứng dụng của vật liệu composite vào lĩnh vực vận tải biển.[Internet] - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.2 Ứng dụng của vật liệu composite vào lĩnh vực vận tải biển.[Internet] (Trang 13)
Hình 1.3 Ứng dụng của vật liệu composite vào lĩnh vực năng lƣợng. - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.3 Ứng dụng của vật liệu composite vào lĩnh vực năng lƣợng (Trang 14)
Hình 1.4. Ứng dụng vật liệu composite trong xây dựng 1.2. Vật liệu composite   - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.4. Ứng dụng vật liệu composite trong xây dựng 1.2. Vật liệu composite (Trang 14)
Hình 1.5: Vật liệu cấu tạo từ các lớp sợi - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.5 Vật liệu cấu tạo từ các lớp sợi (Trang 15)
Hình 1.7: Vật liệu Sandwich [2] - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.7 Vật liệu Sandwich [2] (Trang 16)
Hình 1.9. Sơ đồ ứng xử của kết cấu composite phân lớp [2] - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 1.9. Sơ đồ ứng xử của kết cấu composite phân lớp [2] (Trang 17)
Hình 2.1 minh họa điển hình tọa độ địa phƣơng và tọa độ tổng thể. Hệ trục tọa  độ  địa  phƣơng  xoay  một  góc θ   đối  với  hệ  trục  tọa  độ  tổng  thể - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 2.1 minh họa điển hình tọa độ địa phƣơng và tọa độ tổng thể. Hệ trục tọa độ địa phƣơng xoay một góc θ đối với hệ trục tọa độ tổng thể (Trang 20)
Hình 2.2: trục toạ độ tổng thể và địa phƣơng của tấm composite - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 2.2 trục toạ độ tổng thể và địa phƣơng của tấm composite (Trang 21)
Hình 2.4: Mô hình chƣa biến dạng và biến dạng của tấm theo lý thuyết biến - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 2.4 Mô hình chƣa biến dạng và biến dạng của tấm theo lý thuyết biến (Trang 24)
Hình 2.5. Kích thước hình học của một dầm composite laminate - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 2.5. Kích thước hình học của một dầm composite laminate (Trang 25)
Bảng 2.1: Bảng điều kiện biên của dầm theo lý thuyết biến dạng cắt bậc cao - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 2.1 Bảng điều kiện biên của dầm theo lý thuyết biến dạng cắt bậc cao (Trang 30)
Bảng 3.1: Bảng điều kiện biên của dầm theo lý thuyết Quasi-3D - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 3.1 Bảng điều kiện biên của dầm theo lý thuyết Quasi-3D (Trang 37)
Bảng 4.1: Hiệu ứng của hệ số chiều dài nhi p- chiều cao tiết diện lên tần số - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 4.1 Hiệu ứng của hệ số chiều dài nhi p- chiều cao tiết diện lên tần số (Trang 39)
Bảng 4.2: Hiệu ứng của hệ số chiều dài nhi p- chiều cao tiết diện lên lực ổn - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 4.2 Hiệu ứng của hệ số chiều dài nhi p- chiều cao tiết diện lên lực ổn (Trang 40)
Bảng 4.3:Tần số dao động tự nhiên không thứ nguyên của dầm composite lớp - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 4.3 Tần số dao động tự nhiên không thứ nguyên của dầm composite lớp (Trang 42)
Hình 4.3. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.3. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng (Trang 43)
Hình 4.2. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng sợi - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.2. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng sợi (Trang 43)
Hình 4.5. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.5. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng (Trang 44)
Hình 4.4. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.4. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng (Trang 44)
Hình 4.6. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.6. Sự biến đổi của lực ổn định tới hạn với lớp sợi đối xứng và hƣớng (Trang 45)
Bảng 4.4:Tần số dao động tự nhiên không thứ nguyên của dầm composite với - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 4.4 Tần số dao động tự nhiên không thứ nguyên của dầm composite với (Trang 46)
Hình 4.8 Đồ thị hiệu ứng của vật liệu không đẳng hƣớng lên lực ổn định tới hạn không thứ nguyên của vật liệu có góc sợi đối xứng và không đối xứng L/h =10 - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.8 Đồ thị hiệu ứng của vật liệu không đẳng hƣớng lên lực ổn định tới hạn không thứ nguyên của vật liệu có góc sợi đối xứng và không đối xứng L/h =10 (Trang 48)
Hình 4.7. Đồ thị hiệu ứng của vật liệu không đẳng hƣớng lên lực ổn định tới hạn - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.7. Đồ thị hiệu ứng của vật liệu không đẳng hƣớng lên lực ổn định tới hạn (Trang 48)
Hình 4.10. Đồ thị biểu diễn hiệu ứng của sự đổi L/h lên lực ổn định tới hạn không thứ nguyên của vật liệu - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Hình 4.10. Đồ thị biểu diễn hiệu ứng của sự đổi L/h lên lực ổn định tới hạn không thứ nguyên của vật liệu (Trang 49)
4Trong  đó,   i   là  nhân  tử  Lagrange,  là  hàm  hỗ  trợ  - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
4 Trong đó,  i là nhân tử Lagrange, là hàm hỗ trợ (Trang 63)
Bảng 3: Hiệu ứng của hệ số chiều dài nhi p- chiều cao tiết - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 3 Hiệu ứng của hệ số chiều dài nhi p- chiều cao tiết (Trang 63)
Bảng 4:Tần số dao động tự nhiên không thứ nguyên của - (Luận văn thạc sĩ) phân tích ứng xử dầm composite sử dụng lý thuyết biến dạng cắt bậc cao
Bảng 4 Tần số dao động tự nhiên không thứ nguyên của (Trang 64)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w