THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 65 |
Dung lượng | 5,52 MB |
Nội dung
Ngày đăng: 30/11/2021, 22:38
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||
---|---|---|---|---|---|---|---|---|
[36] Reissner, E. (1945), “The effect of transverse shear deformation on the bending of elastic plates”, J. Appl. Mech., 12, pp. 69–76 | Sách, tạp chí |
|
||||||
[37] Mindlin, R.D. (1951), “Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates”, J. Appl. Mech., 18, pp. 31–38 | Sách, tạp chí |
|
||||||
[1] A.A. Khdeir, L. Librescu, Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory, Compos. Struct. 9 (1988) 189–213 | Khác | |||||||
[2] N.J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater. 4 (1970) 20–34 | Khác | |||||||
[3] A.K. Noor, Free vibration of multilayered composite plates, AIAA J.11 (1973)1038–1039 | Khác | |||||||
[4] A.K. Noor, Stability of multilayered composite plates, Fibre Sci. Technol. 8 (1975) 81–89 | Khác | |||||||
[5] J.N. Reddy, Mechanics of Laminated Composite Plates – Theory and Analysis, CRC Press, New York, 1997 | Khác | |||||||
[6] H. Matsunaga, Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory, Compos. Struct. 48 (2000) 231–244 | Khác | |||||||
[7] T. Kant, K. Swaminathan, Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory, Compos.Struct. 53 (2001)73–85 | Khác | |||||||
[8] L. Liu, L.P. Chua, D.N. Ghista, Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable compositelaminates, Compos. Struct. 78 (2007) 58–69 | Khác | |||||||
[9] C.A. Shankara, N.G.R. Iyengar, AC 0 element for the free vibration analysis of laminated composite plates, J. Sound Vib. 191 (1996) 721–738 | Khác | |||||||
[10] G.R. Liu, T. Nguyen-Thoi, H. Nguyen-Xuan, K.Y. Lam, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct. 87 (2009) 14–26 | Khác | |||||||
[11] H. Nguyen-Xuan, T. Rabczuk, N. Nguyen-Thanh, T. Nguyen-Thoi, S. Bordas, A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates, Comput. Mech. 46 (2010) 679–701 | Khác | |||||||
[12] K.U. Bletzinger, M. Bischoff, E. Ramm, A unified approach for shear-locking free triangular and rectangular shell finite elements, Comput. Struct. 75 (2000) 321–334 | Khác | |||||||
[13] Bathe KJ, Dvorkin EN. A formulation of general shell elements – the use of mixed interpolation of tensorial components. Int J Numer Meth Eng 1986; 22: 697–722 | Khác | |||||||
[14] Dvorkin EN, Bathe KJ. A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1984;1: 77–88 | Khác | |||||||
[15] Bathe et al. Towards improving the MITC9 shell element. Comput Struct 2003;81:477–89 | Khác | |||||||
[16] Bucalem ML and Bathe KJ. Higher-order MITC general shell elements. Int J Numer Meth Eng 1993;36:3729–54 | Khác | |||||||
[17] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, second ed., CRC Press, London, 2004 | Khác | |||||||
[18] J. Belinha, L.M.J.S. Dinis, Analysis of plates and laminates using the element-free Galerkin method, Compos. Struct. 84 (2006) 1547–1559 | Khác |
HÌNH ẢNH LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN