Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 48 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
48
Dung lượng
516,24 KB
Nội dung
- 39 -
CHỈÅNG 3
SỈÛ BIÃÚN ÂÄØI NÀNG LỈÅÜNG TRONG TÁƯNG TÚC BIN
3.1- Nhỉỵng gi thiãút v cạc phỉång trçnh cå bn.
Quạ trçnh biãún âäøi nàng lỉåüng trong túc bin ráút phỉïc tảp, phủ thüc vo ráút
nhiãưu úu täú nhỉ kêch thỉåïc ca táưng túc bin, chãú âäü dng chy v.v Âãø cọ thãø tênh
toạn chụng ta cáưn co mäüt säú gi thiãút v sỉí dủng mäüt säú phỉång trçnh cå bn ca
dng chy. Åí âáy ta s xẹt dng håi l äøn âënh mäüt chiãưu, tỉïc l ta cho ràòng cạc
thäng säú ca dng åí báút k âiãøm no cng âỉåüc giỉỵ khäng âäøi theo thåìi gian v sỉû
thay âäøi chè xy ra khi chuøn tỉì tiãút diãûn ny sang tiãút diãûn khạc.
Thỉûc tãú, trong táưng túc bin dng ln bë cháún âäüng theo chu k
. Cạnh âäüng
âỉåüc gàõn lãn vnh âéa v cng quay trn, láưn lỉåüt khi thç âi qua pháưn trung tám ca
rnh äúng phun, khi thç càõt ngang vãût åí sau mẹp ra ca cạc cạnh quảt åí trỉåïc âọ. Vç
thãú täúc âäü dng håi bao quanh cạnh quảt thay âäøi theo chu k, âãø âån gin họa ta gi
thiãút gáưn âụng ràòng, dng håi trong cạnh âäüng l äøn âënh, v s hiãûu chènh sỉû sai lãûch
do dng khäng âãưu bàòng hãû säú cạc täøn tháút phạt sinh trong dy cạnh âäüng. Âiãưu kiãûn
äøn âënh cng khäng âỉåüc tn th trong nhỉỵng trỉåìng håüp lm viãûc âàûc biãût ca túc
bin, vê dủ, khi thay âäøi nhanh lỉu lỉåüng håi qua túc bin v khi cạc thäng säú håi ban
âáưu v cúi bë dao âäüng.
Âäúi våï
i nhiãưu bi toạn thỉûc tãú cáưn phi gii khi tênh toạn túc bin, cọ thãø sỉí
dủng cạc phỉång trçnh mäüt chiãưu, cho ràòng sỉû thay âäøi cạc thäng säú v täúc âäü ca
dng trong rnh chè xy ra theo mäüt chiãưu ca tám rnh. Trong nhiãưu trỉåìng håüp
cng cáưn xẹt âãún dng hai hồûc ba chiãưu nỉỵa.ÅÍ nhỉỵng chäù m sỉû phán têch bàòng l
thuút chỉa â âm bo âäü tin cáûy, khi xạc âënh cạc âàûc tênh thỉûc ca dng chy, thç
phi nhåì âãún thỉûc nghiãûm. Sỉû kãút håüp giỉỵa th thût toạn hc â âỉåüc âån gin họa
våïi cạc hãû säú thỉûc nghiãûm s cho ta kãút qu khạ chênh xạc.
Âãø
tênh toạn dng chy ca cháút lng chëu nẹn v mä t quạ trçnh biãún âäøi
nàng lỉåüng trong táưng túc bin, ta s sỉí dủng nhỉỵng phỉång trçnh cå bn sau âáy :
1) Phỉång trçnh trảng thại
2) Phỉång trçnh liãn tủc
3) Phỉång trçnh âäüng lỉåüng
4) Phỉång trçnh bo ton nàng lỉåüng.
1- Phỉång trçnh trảng thại:
Phỉång trçnh trảng thại âån gin nháút âäúi våïi khê l tỉåíng l phỉång trçnh Clapeyron:
pv = RT (3-1)
- 40 -
Trong õoù :
p - aùp suỏỳt tuyóỷt õọỳi , N/m
2
hay Pa
v =
1
- thóứ tờch rióng, m
3
/kg
- mỏỷt õọỹ, kg/ m
3
T - nhióỷt õọỹ tuyóỷt õọỳi,
o
K
R - hỡng sọỳ chỏỳt khờ, J/õọỹ
Nóỳu p = 1,013.10
5
p
a
; v
à
= 22,4 Nm
3
/mole ; T = 273
o
K
R =
314,8
273
4,22.10.013,1
T
pv
5
n
==
à
kJ/õọỹ
Moỹi chỏỳt khờ thoớa maợn phổồng trỗnh naỡy õổồỹc goỹi laỡ khờ lyù tổồớng.
ọỳi vồùi hồi quaù nhióỷt phổồng trỗnh naỡy khọng chờnh xaùc, bồới vỗ hóỷ sọỳ R phuỷ
thuọỹc vaỡo aùp suỏỳt vaỡ nhióỷt õọỹ vaỡ quan hóỷ phuỷ thuọỹc chờnh xaùc laỡ :
i =
1k
k
pv + const (3-2)
Tổùc laỡ, entanpi cuớa hồi giổợ khọng õọứi khi tờch pv laỡ mọỹt hũng sọỳ. Nóỳu hồi coù
tờnh chỏỳt thoớa maợn õổồỹc phổồng trỗnh (3-2) thỗ goỹi laỡ hồi lyù tổồớng.
Nóỳu cho rũng quaù trỗnh giaợn nồớ hồi dióựn ra khọng coù tọứn thỏỳt, nhổng nhióỷt
cung cỏỳp vaỡo khọng thay õọứi, thỗ sổỷ thay õọứi traỷng thaùi hồi lyù tổồớng seợ tuỏn theo
phổồng trỗnh cuớa quaù trỗnh õa bióỳn ;
pv
n
= const (3-3)
Vaỡ hióỷu cuớa entanpi seợ laỡ :
i
o
- i
1
=
n
n
o
oo
p
p
vp
n
n
1
1
1
1
(3-4)
Trong õoù n - sọỳ muợ cuớa quaù trỗnh õa bióỳn.
Trong trổồỡng hồỹp rióng, khi khọng coù trao õọứi nhióỷt vồùi mọi trổồỡng bón ngoaỡi,
doỡng chaớy laỡ õoaỷn nhióỷt vaỡ khọng coù tọứn thỏỳt thỗ sọỳ muợ n seợ bũng sọỳ muợ õoaỷn nhióỷt vaỡ
cuợng bũng tyớ sọỳ caùc nhióỷt dung :
n = k =
V
p
C
C
(3-4a)
Coỡn hióỷu entanpi ồớ quaù trỗnh giaợn nồớ õúng entropi laỡ :
i
o
- i
1
=
k
1k
o
1
oo
p
p
1vp
1k
k
(3-4b)
- 41 -
Säú m âoản nhiãût k âäúi våïi håi nỉåïc quạ nhiãût thay âäøi trong phảm vi k = 1,25
÷
1,33, thỉåìng ta láúy k = 1,3, âäúi våïi håi bo ha khä k = 1,135.
Tuy nhiãn viãûc tênh toạn theo cạc cäng thỉïc â nãu khäng âm bo âäü chênh
xạc cao, nháút l khi quạ trçnh gin nåí lải chuøn tỉì vng håi quạ nhiãût sang vng håi
áøm. Lục ny bàõt büc phi dng bng håi nỉåïc hay l gin âäư i-s
2- Phỉång trçnh liãn tủc
Gi sỉí ràòng, trong rnh ( H 3.1) cọ dng håi chuøn âäüng äøn âënh, mäüt chiãưu.
Ngoi ra ta cho ràòng, tám ca rnh gáưn nhỉ theo âỉåìng thàóng v tiãút diãûn ngang hồûc
l khäng thay âäøi hồûc l thay âäøi
âãưu âàûn.
Sỉû phán phäúi täúc âäü trong
tiãút diãû
n ngang ca rnh cng âỉåüc
thãø hiãûn trãn H 3.1.
ÅÍ pháưn giỉỵa ca tiãút diãûn
(trong phảm vi âoản b) täúc âäü
tỉång âäúi khäng âäøi v bàòng C
1
,
cn åí låïp biãn täúc âäü ca dng
thay âäøi tỉì khäng (ngay trãn vạch)
âãún C
1
. Sỉû thay âäøi täúc âäü trong
phảm vi låïp biãn do lỉûc ma sạt (âäü
nhåït) ca cháút lng xạc âënh. Màût
khạc, bãư dy ca låïp biãn cng
khạc nhau v phủ thüc vo âäü
nhåït, täúc âäü dng chy, kêch thỉåïc
hçnh hc ca rnh, m dng cọ thãø
tàng täúc hồûc gim täúc trãn âoản rnh áúy.
Ta s xẹt dng chy trong âoản rnh trãn Hçnh.3.1. Tải âiãøm A, trãn tiãút diãûn
0-0, ta tạch mäüt pháưn tỉí diãûn têch dF
o
v k hiãûu C
o
vẹctå täúc âäü thàóng gọc våïi pháưn
tỉí diãûn têch áúy ; v
o
- thãø têch riãng tải âiãøm A.
Ta cọ lỉu lỉåüng khäúi lỉåüng ca håi trong mäüt giáy âi qua diãûn têch dF
o
trãn
diãûn têch 0-0 bàòng :
o
o
o
o
dF
v
C
dG =
Láúy têch phán trãn ton tiãút diãûn 0-0, ta âỉåüc lỉu lỉåüng ton pháưn ca trong
mäüt säú giáy chy qua tiãút diãûn F
o
0
0
1
1
0
0
1
1
C
0
C
0
F
0
F
1
C
1
Låïp biãn
dF
o
A
dF
1
C
1m
b
Hçnh. 3.1 Så âäư ca dng trong rnh
v sỉû phán bäú täúc âäü trong cạc
tiãút diãûn ngang ca rnh
- 42 -
o
)Fo(
o
o
o
dF
v
C
G
∫
=
Tỉång tỉû âäúi våïi lỉu lỉåüng håi khi ra khi rnh qua tiãút diãûn 1-1 ta cọ :
1
1
1
)F(
1
dF
v
C
G
1
∫
=
Khi chuøn âäüng äøn âënh, lỉu lỉåüng håi âi qua âoản rnh âang xẹt trong mäüt
giáy l khäng âäøi, tỉïc l G
o
= G
1
hay l :
o
o
o
)F(
dF
v
C
0
∫
=
1
1
1
)F(
dF
v
C
1
∫
(3-5)
Têch phán lỉu lỉåüng theo tiãút diãûn ngang ca rnh cọ thãø trçnh by dỉåïi dảng:
F
C
v
C
v
dF
m
m
F1
1
1
1
1
1
1
=
∫
()
Trong âọ C
1m
v v
1m
- cạc âải lỉåüng trung bçnh (theo lỉu lỉåüng) ca täúc âäü v
thãø têch riãng ca håi.
Trong nhiãưu trỉåìng håüp thỉûc tãú ngỉåìi ta tênh toạn theo giạ trë trung bçnh ca
C
1m
v v
1m
.
Trong trỉåìng håüp täøng quạt ta viãút phỉång trçnh liãn tủc dỉåïi dảng :
F
C
v
F
C
v
0
0
0
1
1
1
=
hay l
==
v
C
FG
const (3-6)
Viãút dỉåïi dảng lägarit :
lnG = lnF + lnC - lnv
Viãút dỉåïi dảng vi phán
0
v
dv
C
dC
F
dF
=−+ (3-7)
hay l
C
dC
v
dv
F
dF
−=
(3-7’)
Phỉång trçnh (3-7’) cng chè ra ràòng, gia säú diãûn têch tiãút diãûn ngang ca rnh
âỉåüc xạc âënh båíi täøng ca gia säú täúc âäü dng chy v gia säú thãø têch riãng. Gia säú
ny cng cọ thãø ám hồûc dỉång, nghéa l äúng phun cọ thãø nh dáưn hồûc låïn dáưn. Tỉì
cå såí ny ngỉåìi ta chãú tảo ra cạc äúng phun cọ täúc âäü låïn hån ám thanh, hay cn gi l
äúng phun Laval
- 43 -
3- Phỉång trçnh âäüng lỉåüng
Ta xẹt mäüt âoản rnh thàóng
cọ tiãút diãûn ngang thay âäøi tỉì tỉì
(Hçnh.3.2). Ta tạch rnh äúng dng
våïi tiãút diãûn åí âáưu vo l
f
o
v åí
âáưu ra f
1
cáưn nhåï ràòng, äúng dng l
bãư màût âỉåüc tạch riãng båíi cạc
âỉåìng dng, tỉïc l, nhỉỵng âỉåìng
m dc theo chụng vectå täúc âäü
ln giỉỵ hỉåïng tiãúp tuún våïi
nhỉỵng âỉåìng áúy.
Xẹt khäúi lỉåüng håi âiãưn âáưy
âoản äúng dng âọ dm v viãút
phỉång trçnh ca cạc lỉûc tạc dủng
lãn khäúi lỉåüng áúy.
K hiãûu : p
o
- ạp sút tải tiãút diãûn f
o
;
d
x
- khong cạch giỉỵa f
o
v f
1
;
Tải tiãút diãûn f
1
ạp sút s bàòng
p
o
+
dx
x
p
δ
δ
Nhỉỵng lỉûc do ạp sút tạc dủng lãn bãư màût ngoi ca äúng dng s tỉû cán bàòng
nhau.
Trong dng thỉûc ta cáưn phi tênh âãún tråí lỉûc truưn cho mäi cháút bãn ngoi
trãn bãư màût ca äúng dng v hỉåïng ngỉåüc chiãưu chuøn âäüng.
Nãúu gi dS
1
- pháưn lỉûc ma sạt (tråí lỉûc).
Thç theo phỉång trçnh Dalàmbe cọ thãø viãút :
fp f p
p
x
dx dS dm
dC
d
oo o
−+
⎛
⎝
⎜
⎞
⎠
⎟− =
11
∂
∂τ
(3-8)
Trong âọ
dC/dr - gia täúc ca khäúi lỉåüng håi dm.
Vç tiãút diãûn ca äúng dng êt thay âäøi, d
x
cng bẹ thç f
o
→ f
1
→ f v âàóng thỉïc
(3-8) s l :
- f
τ
δ
δ
d
dC
dmdsdx
x
p
=−
1
(3-9)
Âem chia c hai vãú cho dm v âãø ràòng dm =
ρ
.f.dx, ta cọ
τδ
δ
ρ
d
Cd
S
x
p
=−−
1
(3-10)
dx
1
δ
p
2
δ
x
p
+
ο
d
x
1
δ
p
2
δ
x
p
+
ο
d
x
0
1
C
p
ο
f
ο
d
S
1
f
p
+
ο
1
Hçnh 3.2. Pháưn tỉí âoản rnh våïi tiãút diãûn
thay âäøi âãưu âàûn
- 44 -
õỏy,
- mỏỷt õọỹ cuớa hồi
dm
ds
S
1
=
- lổỷc caớn trón 1 kg troỹng khọỳi cuớa doỡng chỏỳt loớng (hồi)
Chuù yù rũng, õaỷo haỡm toaỡn phỏửn cuớa aùp suỏỳt theo thồỡi gian ồớ bỏỳt kyỡ tióỳt dióỷn
naỡo cuớa doỡng thúng õổồỹc bióứu thở bũng bióứu thổùc:
+
=
d
dx
x
pp
d
dp
Trong chuyóứn õọỹng ọứn õởnh sổỷ thay õọứi aùp suỏỳt cuỷc bọỹ theo thồỡi gian laỡ bũng
khọng, tổùc laỡ
0
p
=
,
Do õoù
=
d
dx
x
p
d
dp
Vỏỷy laỡ
p
x
dp
dx
=
Nhổ thóỳ, phổồng trỗnh (3.10) coù daỷng :
dC.
d
dx
Sdx
dp
=
Nhổng C =
d
dx
Cho nón
dC.CSdx
dp
=
(3-11)
(3.11) goỹi laỡ phổồng trỗnh õọỹng lổồỹng cuớa doỡng chaớy mọỹt chióửu.
Nóỳu lỏỳy tờch phỏn phổồng trỗnh (3.11) trón õoaỷn õổồỡng di chuyóứn hổợu haỷn cuớa
hồi, ta õổồỹc trổồỡng hồỹp rióng cuớa phổồng trỗnh baớo toaỡn nng lổồỹng.
==
1
1
1
1
2
22
1
X
X
P
P
X
X
Po
P
o
o
o
o
SdxvdpSdx
dp
CC
(3-12)
Gia sọỳ õọỹng nng cuớa doỡng bũng hióỷu sọỳ cọng giaợn nồớ cuớa hồi khi chuyóứn
õọỹng (
0
1
P
P
vdp ) vaỡ cọng cuớa lổỷc ma saùt (
1
0
X
X
Sdx
)
Muọỳn tỗm gia sọỳ õọỹng nng cuớa doỡng phaới lỏỳy tờch phỏn vóỳ phaới cuớa phổồng
trỗnh (3.12). Muọỳn vỏỷy phaới bióỳt õởnh luỏỷt thay õọứi traỷng thaùi v = F(p) vaỡ õởnh luỏỷt
thay õọứi cuớa lổỷc ma saùt S = F(x). ỷc bióỷt laỡ õồn giaớn nóỳu baỡi toaùn õổồỹc giaới cho
trổồỡng hồỹp doỡng chaớy õúng entropi, tổùc laỡ doỡng chaớy khọng coù tọứn thỏỳt vaỡ khọng coù
trao õọứi nhióỷt vồùi bón ngoaỡi. Luùc naỡy lổỷc ma saùt S = 0, vaỡ phổồng trỗnh thay õọứi traỷng
thaùi tuỏn theo õởnh luỏỷt õúng entropi :
k
t
k
oo
k
t11
pv
v
pvp == = const
- 45 -
Tổỡ õỏỳy, v = v
o
k
1
o
p
p
vaỡ thay vaỡo ta coù :
==
k
1k
o
1
oo
k
1
p
p
k
1
oo
2
o
2
1
p
p
1vp
1k
k
dpppv
2
CC
o
1
=
=
=
1k
1
o
oo11oo
v
v
1vp
1k
k
)vpvp(
1k
k
(3.13)
Nóỳu quaù trỗnh giaợn nồớ õúng entropi
cuớa hồi chuyóứn õọỹng õổồỹc bióứu thở trón
õọử thở pv ( Hỗnh.3.3) thỗ trong phổồng
trỗnh (3.12) tờch vdp seợ tổồng õổồng
vồùi dióỷn tờch phỏửn gaỷch soỹc, coỡn sọỳ gia
toaỡn bọỹ cuớa õọỹng nng seợ tổồng õổồng
vồùi dióỷn tờch õổồỹc giồùi haỷn bồới õổồỡng
thúng entropi, caùc õổồỡng thúng õúng aùp
p
o
vaỡ p
1
vaỡ truỷc tung.
Trong trổồỡng hồỹp phaới tờnh õóỳn
lổỷc ma saùt (S 0) thỗ chố coù thóứ lỏỳy tờch
phỏn phổồng trỗnh (3.12) õaợ bióỳt
S = S(x) vaỡ v = F(p).
Chuù yù rũng, nhổợng phổồng trỗnh trón õỏy õaợ õổồỹc chổùng minh cho ọỳng doỡng
vồùi phỏửn tổớ dióỷn tờch f
o
vaỡ f
1
coù thóứ mồớ rọỹng ra cho toaỡn tióỳt dióỷn cuớa raợnh. Nhổng
trong trổồỡng hồỹp õoù, caùc õaỷi lổồỹng c, v, p phaới lỏỳy theo giaù trở trung bỗnh.
4- Phổồng trỗnh baớo toaỡn nng lổồỹng
Ta ổùng duỷng phổồng trỗnh baớo toaỡn nng lổồỹng cho doỡng hồi ọứn õởnh. Giaớ sổớ
doỡng hồi chuyóứn õọỹng qua hóỷ thọỳng bỏỳt kyỡ (Hỗnh.3.4)
Lổu lổồỹng troỹng lổồỹng cuớa doỡng hồi trong mọỹt giỏy laỡ G,kg/s.
Giaớ sổớ trong phaỷm vi cuớa hóỷ thọỳng seợ cung cỏỳp cho hồi mọỹt lổồỹng nhióỷt Q, J/s,
õọửng thồỡi trao õọứi cho mọi trổồỡng bón ngoaỡi cọng suỏỳt P,J/s.
Phổồng trỗnh baớo toaỡn nng lổồỹng phaớn aùnh sổỷ cỏn bũng cuớa tọứng caùc daỷng
nng lổồỹng õổa vaỡo vaỡ ra khoới hóỷ thọỳng.
Kyù hióỷu : - Chố sọỳ 0 - Caùc thọng sọỳ trung bỗnh cuớa hồi ồớ tióỳ
t dióỷn vaỡo hóỷ thọỳng
0-0 ; - Chố sọỳ 1 - Caùc thọng sọỳ trung bỗnh cuớa hồi ồớ tióỳt dióỷn ra khoới hóỷ thọỳng 1-1.
p
p
v
a
b
1
u
u
p
1
dp
v
Hỗnh. 3.3. Cọng baỡnh trổồùng cuớa
doỡng chaớy
- 46 -
Sau thồỡi gian d tọứng caùc daỷng nng lổồỹng õổa vaỡo seợ laỡ
+++ QddxFpGd
2
C
GdU
ooo
2
o
o
õỏy
U
o
- nọỹi nng
cuớa 1 kg troỹng lổồỹng
hồi õổa vaỡo ;
2
2
0
C
- õọỹng
nng cuớa 1 kg troỹng
lổồỹng õổa vaỡo, chuyóứn
õọỹng vồùi tọỳc õọỹ C
o
;
p
o
F
o
dx
o
- cọng
cuớa hồi khi dởch
chuyóứn trón õoaỷn õổồỡng dx
o
Qd - lổồỹng nhióỷt õổa vaỡo hóỷ thọỳng sau thồỡi gian d.
Cuợng bũng caùch nhổ vỏỷy, ta vióỳt tọứng caùc daỷng nng lổồỹng ra khoới hóỷ thọỳng:
PddxFpGd
C
GdU +++
111
2
1
1
2
Trong õoù :
P - cọng cuớa doỡng hồi sinh ra trong mọỹt õồn vở thồỡi gian.
Cỏn bũng hai phổồng trỗnh trón vaỡ chia cho Gd, ta coù :
G
P
Gd
dx
F
p
2
C
U
G
Q
Gd
dx
F
p
2
C
U
111
2
1
1
ooo
2
o
o
+
++=+
++
(3-14)
óứ yù rũng, theo phổồng trỗnh lión tuỷc F.C/v = G vaỡ dx
o
/d = C
o
, dx
1
/d = C
1
;
Kyù hióỷu Q/G = q
o
- lổồỹng nhióỷt cung cỏỳp cho 1 kg hồi, P/G = l - cọng do 1 kg
hồi sinh ra, ta vióỳt phổồng trỗnh (3.15) dổồùi daỷng :
1
2
1
111
2
22
l
C
vpUq
C
vpU
o
o
ooo
++=++ (3-15)
hay laỡ , vỗ U + pv = i - entanpi cuớa hồi, ta coù :
1
2
1
1
2
22
l
C
iq
C
i
o
o
o
++=++
(3-16)
Bióứu thổùc naỡy õổồỹc goỹi laỡ Phổồng trỗnh baớo toaỡn nng lổồỹng cho sổỷ chuyóứn
õọỹng ọứn õởnh cuớa hồi.
Phổồng trỗnh naỡy õuùng cho caớ doỡng hồi coù tọứn thỏỳt (S 0) hay khọng coù tọứn
thỏỳt (S = 0)
Phổồng trỗnh (3.16) coù thóứ vióỳt dổồùi daỷng vi phỏn:
dx
1
dx
a
a
'
a
a
'
b
b
'
b
b
'
G
p
c
u
,
t
,
i
,
,
G
u
,
c
t
,
p
i
1
1
1
1
1
1
Q
P
Hỗnh. 3.4. Doỡng hồi chuyóứn õọỹng trong hóỷ thọỳng bỏỳt kyỡ
- 47 -
di + CdC - dp - dl = 0 (3-17)
Nhỉỵng phỉång trçnh trãn âáy cho ta gii âỉåüc nhiãưu bi toạn thỉûc tãú trong viãûc
tênh toạn cạc rnh, cạc äúng phun håi, v.v
3.2- Nhỉỵng âàûc tênh v cạc thäng säú håi ch úu ca dng trong rnh
Dng chy mäüt chiãưu trong rnh âỉåüc chia ra dng tàng täúc v dng tàng ạp
(gim täúc)
Dng tàng täúc
l dng trong rnh våïi täúc âäü ca mäi cháút tàng lãn theo hỉåïng
dng.
Trong pháưn chuøn håi ca mạy túc bin (túc bin håi v khê, mạy nẹn) dng
tàng täúc l dng chy trong rnh äúng phun v cạnh âäüng túc bin, trong äúng vo ca
chụng v.v dng tàng ạp l dng chy trong rnh hỉåïng v cạ
nh âäüng ca mạy nẹn,
trong cạc äúng thoạt ca túc bin håi, túc bin khê v mạy nẹn, trong cạc bäü pháûn
khúch tạn ca van stop v van âiãưu chènh. Chụ ràòng, trong rnh cạnh âäüng nhỉỵng
táưng âàûc biãût dng chy ca håi hay khê cọ thãø l tàng ạp (gim täúc).
Nhỉỵng phỉång trçnh cå bn ca dng mäüt chiãưu â trçnh by trong mủc 3.1
cho ta tênh toạn dng chy trong cạc rnh túc bin.
Tỉì phỉång trçnh (3.16) tháúy ràòng, våïi dng tàng täúc, vê dủ, trong cạc äúng phun
túc bin, dc theo dng chy, cng våïi sỉû tàng täúc âäü ca mäi cháút, entanpi tàng, båíi
vç täúc âäü gim.
Trong cạc rnh äúng phun, khi entanpi gim, ạp sút dc theo rnh cng gim,
tỉï
c l mäi cháút (håi) gin nåí v ngỉåüc lải, trong cạc rnh tàng ạp, ạp sút tàng lãn
theo hỉåïng dng, tỉïc l mäi cháút bë nẹn.
Gi thiãút ràòng, håi chuøn âäüng trong rnh khäng trao âäøi nhiãût våïi mäi
trỉåìng bãn ngoi.
Tỉì phỉång trçnh (3.16) ta cọ säú gia âäüng nàng khi gin nåí s l :
to
t
ii
CC
1
2
0
2
1
2
−=
−
(3-18)
Âäúi våïi quạ trçnh thỉûc :
t1o
2
0
2
1
ii
2
CC
−=
−
(3-18’)
Trong âọ : [i] = [J/kg] ; [C] = [m/s]
Nhỉ váûy l sỉû thay âäøi âäüng nàng ca dng håi do sỉû thay âäøi entanpi quút
âënh.
Nãúu âäúi våïi “håi l tỉåíng”, cọ thãø viãút cäng thỉïc (3.18a) nhỉ sau :
- 48 -
)vpvp(
1k
k
2
CC
t11oo
2
0
2
t1
=
(3-19)
ọỳi vồùi doỡng thổỷc
)(
12
11
2
0
2
1
vpvp
k
k
CC
oo
=
(3-19)
Nhổ vỏỷy, khi khọng coù trao õọứi nhióỷt vồùi mọi trổồỡng bón ngoaỡi (doỡng chaớy
õoaỷn nhióỷt) sọỳ gia õọỹng nng chố do traỷng thaùi õỏửu vaỡ cuọỳi cuớa hồi xaùc õởnh vaỡ khọng
phuỷ thuọỹc vaỡo õởnh luỏỷt thay õọứi caùc tọứn thỏỳt (trong quaù trỗnh giaợn nồớ).
Ta seợ xeùt nhổợng trổồỡng hồỹp ổùng duỷng
khaùc nhau cuớa caùc phổồng trỗnh õaợ tỗm õổồỹc
õóứ tờnh toaùn ọỳng phun theo sồ õọử trón hỗnh
Hỗnh.3.5.
Giaới phổồng trỗnh (3.18b) ta tỗm
õổồỹc.
2
o1o1
C)ii(2C +=
m/s (3-20)
Trong õoù i tờnh theo õồn vở J/kg ;
C - tờnh theo õồn vở m/s
Nóỳu i tờnh theo õồn vở kJ/kg thỗ:
2
o1o
3
1
C)ii(10.2C += m/s (3-20)
Entanpi i
o
cuớa hồi õổa vaỡo tỗm õổồỹc
ngay trón õọử thở i-s (Hỗnh 3.6). Nóỳu entanpi i
1
ồớ cuọỳi quaù trỗnh giaợn nồớ cuợng õaợ cho,
thỗ cọng thổùc (3-20a) cho ta tỗm õổồỹc tọỳc
õọỹ chuyóứn õọỹng cuớa hồi. Giaớ sổớ chuyóứn
õọỹng khọng coù tọứn thỏỳt vaỡ khọng coù trao
õọứi nhióỷt vồùi mọi trổồỡng bón ngoaỡi, quaù
trỗnh giaợn nồớ cuớa hồi trong ọỳng phun laỡ
õúng entrọpi. Bióỳt õổồỹc aùp suỏỳt p
1
cuớa hồi
khi ra khoới ọỳng phun, veợ õổồỡng thúng
entrọpi a-a trón õọ thở i-s (Hỗnh 3.6), ta tỗm
i
1t
, vaỡ tờnh õổồỹc tọỳc õọỹ C
1t
, (3.20).
Nóỳu cỏửn tờnh tióỳt dióỷn ra cuớa ọỳng
phun thỗ theo traỷng thaùi hồi ồớ õióứm a, tỗm
õổồỹc thóứ tờch rióng v
1t
ồớ cuọỳi quaù trỗnh giaợn
nồớ, aùp duỷng phổồng trỗnh lión tuỷc, ta coù :
p
1
1
p
1
p
p
C
p
C
C
1
C
C
Hỗnh 3.5. ọử thở thay õọứi aùp suỏỳt vaỡ
tọỳc õọỹ doỹc theo tỏm ọỳng phun
a
p
p
h
x
i
i
1
1
t
i
1
t
v
t
p
1
s
h
x
i
Hỗnh.3.6. Quaù trỗnh giaớn nồớ cuớa hồi
trón õọử thi i-s
[...]... = ⎝ F ⎠* k +1 k p o ⎛ 2 ⎞ k −1 ⎜ ⎟ vo ⎝ k + 1⎠ (3. 32) Nãúu thay cạc giạ trë bàòng säú ca säú m k vo cäng (3. 30) v (3. 32) cạc thäng säú tåïi hản s cọ dảng nhỉ trong bng 3- 1 Bng 3- 1 : Cạc thäng säú tåïi hản ca dng khi gin nåí âàóng enträpi Mäi cháút Khäng khê Säú m T säú Täúc âäü tåïi hản., C* m/s âàóng ạp sút enträpi tåïi hản k ε* 1,4 0,52 83 C* = 0,9 13 a o = 1,08 p o v o Lỉu lỉåüng tåïi hản (G/F)* ,... nh dáưn chè cọ thãø dng cäng thỉïc (3. 35) trong phảm vi thay âäøi ε tỉì âãún ε* Cọ thãø thay âäøi cäng thỉïc (3. 36) bàòng cäng thỉïc gáưn âụng trãn cå såí cho ràòng âỉåìng ab (H 3. 10) l cung enlip Ta cọ 2 ⎛ p − p* ⎞ G 1 2 q= = 1−⎜ 1 ⎜ p − p ⎟ = 1 − ε 1 − 2ε * (1 − ε ) − ε ⎟ G* * ⎠ * ⎝ o (3. 38) - 56 - Trong ráút nhiãưu trỉåìng håüp tênh toạn thỉûc tãú cäng thỉïc (3. 38) â cho ta kãút qu khạ chênh xạc... (G/F)* , kg/s.m2 (G/F)* = 0,57 a o v o = 0,685 p o / v o Håi quạ nhiãût 1 ,3 0,5457 C*=0, 932 a o = 1,064 p o v o (G/F)* = 0,585 a o v o = 0,667 p o / v o Håi bo ha khä 1, 135 0,5774 C*= ,967 a o = 1, 032 p o v o (G/F)* = 0,598 a o v o = 0, 635 p o / v o - 53 - Cạc thỉï ngun dng åí âáy nhỉ sau : p o - N/m2 ( 1bar = 105 N/m2 ) ; v o - m3/kg ; a o - m/s ; F - m2 v G - kg ; * Sỉû thay âäøi cạc thäng säú v tiãút... sin(α1+δ1) sinα1 o 30 2,0 o 20 1,5 ε o 10 1,0 0,5 0,4 0 ,3 0,2 0,1 Hçnh 3. 21 Âäư thë âãø xạc âënh gọc lãûch trong miãưn càõt vạt sin (α1 + δa) ≈ sin θ = (3. 58) Nhỉ váûy l, trãn cå såí ca phỉång trçnh liãn tủc cọ thãø thiãút láûp quan hãû gáưn âụng giỉỵa âäü lãûch dng håi trong miãưn càõt vạt ca äúng phun våïi âäü gin nåí ε1 Âäúi våïi håi quạ nhiãût ( k = 1 ,3 ) theo (3. 58) ta dỉûng âäư thë Hçnh 3. 21 Giåïi hản... toạn ) ỈÏng dủng phỉång trçnh (3. 37) ta âỉåüc cäng thỉïc tỉång tỉû nhỉ (3- 58) (C ) sin(α 1 + δ) v = 1 t = 1t o = sin α 1 ( v 1t ) o C 1t = Fmin F1 ⎛ 2 ⎞ ⎜ ⎟ ⎝ k + 1⎠ 2 k 1 1 k +1 ε −ε ε 2 k 1o 2 k 1 −ε ε −ε k −1 k +1 k +1 k 1 ÅÍ âáy chè säú “0” thüc chãú âäü tênh toạn k +1 k 1o k +1 k 1 (3- 60) - 71 - 3- 6 Sỉû biãún âäøi nàng lỉåüng trong táưng túc bin dc trủc: Táưng túc bin l täø håüp ca dy cạnh äúng... táưng trung gian ca túc bin dc trủc (Hçnh 3. 23) Trong rnh cạc äúng phun håi gin nåí tỉì ạp sút trỉåïc äúng phun Po âãún ạp sút P1 trong khe håí åí giỉỵa cạnh po p1 p2 l1 l2 äúng phun v cạnh âäüng ÅÍ âáưu B1 B2 ra khi äúng phun trong quạ ∆1 d trçnh gin nåí mäi cháút cọ täúc âäü C1, hỉåïng theo gọc α1 so våïi vẹc tå täúc âäü vng ca cạnh âäüng (Hçnh 3. 24) Hçnh 3. 23 Så âäư táưng túc bin dc trủc Dy cạnh âäüng... ra khi äúng phun s l : 2 C 1t C 2 = o + i o − i 1t 2 2 (3- 40) (k hiãûu cạc entanpi â dáùn trãn hçnh Hçnh 3. 6 Trong quạ trçnh thỉûc mäüt pháưn âäüng nàng bë tn âi v truưn cho mäi cháút dỉåïi dảng nhiãût Âäüng nàng thỉûc tãú C12 C12t < 2 2 2 2 C1 C o = + i o − i1 2 2 (3- 41) Láúy hiãûu säú ca (3. 40) v (3. 41) ta cọ: ∆h C = C12t − C12 = i o − i1t 2 (3. 42) Âọ l täøn tháút trong dy äúng phun lm cho entanpi... (3- 54) - 62 - Phỉång trçnh ny liãn hãû chàût ch lỉu lỉåüng håi âi qua äúng phun nh dáưn våïi ạp sút tỉång âäúi ban âáưu εo v cúi ε1 Trãn âäư thë hçnh Hçnh 3. 14 l lỉåïi lỉu lỉåüng phn ạnh quan hãû áúy Phỉång trçnh (3. 54) chè âụng trong vng thay âäøi ε1 tỉì ε1 = εoε* âãún ε1 = εo εo= 0,1 1,0 q o= 0,9 0,8 0,9 G Go 0,8 0,7 0,7 0,6 0,6 0,5 0,5 0,4 0,4 0 ,3 0 ,3 0,2 0,1 0,2 εo= 0,1 ε1 , εo 0 0 0,1 0,2 0 ,3. .. thäng säú tåïi hản R rng l våïi täúc âäü tåïi hản M1t = 1 Thay giạ trë M1t vo phỉång trçnh (3. 29), ta tçm âỉåüc t säú ạp sút tåïi hản k ⎛ 2 ⎞ k −1 ε∗ = ⎜ ⎟ ⎝ k +1⎠ (3- 30) Âäưng thåìi tỉì phỉång trçnh (3. 28) ta tçm täúc âäü tåïi hản ca dng 2 a2 a2 ao * + * = 2 k −1 k −1 - 52 - V 2 = k +1 a* = a o 2k po v o k +1 (3- 31) * Lỉu lỉåüng tåïi hản : Ta s ạp dủng phỉång trçnh liãn tủc FC1 = Gv1 v thay thãú bàòng... nháûn biãún säú åí âáy l âäü gin nåí, tỉïc l ε = p1/ p o Biãún âäøi phỉång trçnh (3. 24) theo dảng sau âáy : 2 (1 − ε k −1 C 1t = a o k −1 k ) = a* k −1 k +1 (1 − ε ) k k −1 (3- 33) Nãúu chia 2 vãú ca âàóng thỉïc trãn cho täúc âäü tåïi hản a*, ta âỉåüc biãøu thỉïc : C λ = 1t = a* k −1 ⎞ k +1 ⎛ ⎜1 − ε k ⎟ ⎟ k −1 ⎜ ⎠ ⎝ (3. 34) Âọ l sỉû phủ thüc ca täúc âäü khäng thỉï ngun λ (tênh theo mäüt pháưn ca täúc .
1k
1k
o
o
*
1k
2
v
pk
F
G
+
+
=
(3. 32)
Nóỳu thay caùc giaù trở bũng sọỳ cuớa sọỳ muợ k vaỡo cọng (3. 30) vaỡ (3. 32) caùc thọng
sọỳ tồùi haỷn seợ coù daỷng nhổ trong baớng 3- 1.
Baớng. sọỳ chỏỳt khờ, J/õọỹ
Nóỳu p = 1,0 13. 10
5
p
a
; v
à
= 22,4 Nm
3
/mole ; T = 2 73
o
K
R =
31 4,8
2 73
4,22.10.0 13, 1
T
pv
5
n
==
à
kJ/õọỹ
Moỹi chỏỳt