1. Trang chủ
  2. » Trung học cơ sở - phổ thông

trac nghiem toan bo chuong 2 GT 12

11 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 612,14 KB

Nội dung

Trắc nghiệm giải tích 12 chương II Câu14: Hàm số nào dới đây đồng biến trên tập xác định của nó.. x..[r]

(1)Trắc nghiệm giải tích 12 chương II Luü thõa  0,75    1    16    , ta đợc: C©u1: TÝnh: K =   A 12 B 16 C 18 1 3 2  5 D 24 10  :10    0, 25  C©u2: TÝnh: K = , ta đợc A 10 B -10 C 12 D 15 3 3 1 :   3    9 3  1 5 3.252   0,      , ta đợc C©u3: TÝnh: K = 33 A 13 B C   0, 04  C©u4: TÝnh: K =   1,5    0,125  , ta đợc B 121 C 120 A 90 7 C©u6: Cho a lµ mét sè d¬ng, biÓu thøc a A a B a D 125 Câu5: Tính: K = :  3 , ta đợc A B C -1 D C a D a viÕt díi d¹ng luü thõa víi sè mò h÷u tû lµ: 11 D a 3 C©u7: BiÓu thøc a : a viÕt díi d¹ng luü thõa víi sè mò h÷u tû lµ: 5 A a B a C a D a x x x (x > 0) viÕt díi d¹ng luü thõa víi sè mò h÷u tû lµ: C©u8: BiÓu thøc A x C©u9: Cho f(x) = A 0,1 B x C x x x Khi đó f(0,09) bằng: B 0,2 C 0,3 x x D x D 0,4  13    x Khi đó f  10  bằng: 11 13 B 10 C 10 D C©u10: Cho f(x) = A x x 12 x5 Khi đó f(2,7) bằng: B 3,7 C 4,7 D 5,7  1 4 :2 C©u12: TÝnh: K = , ta đợc: A B C D C©u13: Trong c¸c ph¬ng tr×nh sau ®©y, ph¬ng tr×nh nµo cã nghiÖm? C©u11: Cho f(x) = A 2,7 1 A x + = B x   0 Câu14: Mệnh đề nào sau đây là đúng?   2   2 A 2 2 2 2 C  C x   x  1 0  11     11   B 4 2 4 2 D D x  0  Câu15: Chọn mệnh đề đúng các mệnh đề sau: Trang (2) Trắc nghiệm giải tích 12 chương II  1   C   1,4 1    3   2  2     D       1,7 A  B  Câu16: Cho  >  Kết luận nào sau đây là đúng? A  <  B  >  C  +  = 2   x  y   C©u17: Cho K =  A x B 2x e D . = 1  y y     x x   biÓu thøc rót gän cña K lµ: C x + D x - 81a b , ta đợc: 9a b B -9a b C C©u18: Rót gän biÓu thøc: A 9a2b C©u19: Rót gän biÓu thøc: x  x  1 D KÕt qu¶ kh¸c , ta đợc: x x 1 B A x (x + 1) C - x  x  1 D x  x  1 11 Câu20: Rút gọn biểu thức: x x x x : x 16 , ta đợc: A x B x C x D x 232 3 viÕt díi d¹ng luü thõa víi sè mò h÷u tØ lµ: C©u21: BiÓu thøc K = 1   18   A     12  8  6  3 3   B   C   D   x  x 1 x  x 1 x  x 1 C©u22: Rót gän biÓu thøc K = ta đợc: A x2 + B x2 + x + C x2 - x + D x2 - 1  a  a   1 C©u23: NÕu th× gi¸ trÞ cña  lµ: A B C D  Câu24: Cho  27 Mệnh đề nào sau đây là đúng? A -3 <  < B  > C  < D   R       3 Câu25: Trục thức mẫu biểu thức  ta đợc: 25  10  3 A B  C 75  15  D 53 2 1 a   a C©u26: Rót gän biÓu thøc (a > 0), ta đợc: A a B 2a C 3a D 4a   1 : b  (b > 0), ta đợc: C©u27: Rót gän biÓu thøc b A b B b2 C b3 D b4 4 4 Câu28: Rút gọn biểu thức x x : x (x > 0), ta đợc:  A x x x C©u29: Cho   A x x B C D x  x  3 x 23 Khi ®o biÓu thøc K =  3x  3 x cã gi¸ trÞ b»ng: B C D Trang (3) Trắc nghiệm giải tích 12 chương II C©u30: Cho biÓu thøc A = A B  a  1 1  1 2  1  2   b  1 NÕu a = vµ b = C D BÀI TẬP TRẮC NGHIÊM L«garÝt  1 th× gi¸ trÞ cña A lµ: Câu1: Cho a > và a  Tìm mệnh đề đúng các mệnh đề sau: A log a x cã nghÜa víi x B log = a vµ log a = a a n C logaxy = logax.logay D log a x n log a x (x > 0,n  0) Câu2: Cho a > và a  1, x và y là hai số dơng Tìm mệnh đề đúng các mệnh đề sau: x log x 1 log a  a log a  y log a y x log a x A B loga  x  y  log a x  log a y C log 4 C©u3: b»ng: A B C D log b x log b a.log a x D log a C©u4: (a > 0, a  1) b»ng: B C a A - D 4 log 32 C©u5: b»ng: A B log 0,5 0,125 C©u6: b»ng: A B 3 2  a a a4  log a    15 a    b»ng: C©u7: 12 A B log7 C©u8: 49 A C - 12 D C D C D C D C 1000 D 1200 C 4000 D 3800 b»ng: B log2 10 C©u9: 64 b»ng: A 200 B 400 2 lg7 C©u10: 10 b»ng: A 4900 B 4200 log2 33log8 C©u11: b»ng: A 25 B 45 C 50  2log a b C©u12: a (a > 0, a  1, b > 0) b»ng: 2 3 A a b B a b C a b C©u13: NÕu log x 243 5 th× x b»ng: A B C log x 2  C©u14: NÕu th× x b»ng: 3 A B C D 75 D ab D D Trang (4) Trắc nghiệm giải tích 12 chương II 3log  log 16   log C©u15: A C©u16: NÕu A b»ng: B C D log a x  log a  log a  log a 2 (a > 0, a  1) th× x b»ng: B C D log a x  (log a  log a 4) (a > 0, a  1) th× x b»ng: C©u17: NÕu A 2 B C D 16 C©u18: NÕu log2 x 5 log a  log b (a, b > 0) th× x b»ng: 4 A a b B a b C 5a + 4b D 4a + 5b log7 x 8 log ab  log a b C©u19: NÕu (a, b > 0) th× x b»ng: 14 12 14 A a b B a b C a b D a b C©u20: Cho lg2 = a TÝnh lg25 theo a? A + a B 2(2 + 3a) C 2(1 - a) lg C©u21: Cho lg5 = a TÝnh 64 theo a? A + 5a B - 6a C - 3a 125 C©u22: Cho lg2 = a TÝnh lg theo a? A - 5a B 2(a + 5) C 4(1 + a) log  a log 500 C©u23: Cho Khi đó tÝnh theo a lµ:  3a   B A 3a + C 2(5a + 4) Câu24: Cho log a Khi đó log 18 tính theo a là: D 3(5 - 2a) D 6(a - 1) D + 7a D 6a - 2a  A a  a B a  C 2a + D - 3a Câu25: Cho log a; log3 b Khi đó log tính theo a và b là: ab 2 A a  b B a  b C a + b D a  b 2 Câu26: Giả sử ta có hệ thức a + b = 7ab (a, b > 0) Hệ thức nào sau đây là đúng? a b log log2 a  log b log2  a  b  log a  log b A B a b a b log2 2  log a  log b  log log2 a  log b C D log 8.log 81 C©u27: b»ng: A B C D 12 log 2x  x C©u28: Víi gi¸ trÞ nµo cña x th× biÓu thøc cã nghÜa? A < x < B x > C -1 < x < D x < 3 log5 x  x  2x Câu29: Tập hợp các giá trị x để biểu thức cã nghÜa lµ: A (0; 1) B (1; +) C (-1; 0)  (2; +) D (0; 2)  (4; +) log 3.log3 36 C©u30: b»ng: A B C D     Hµm sè Luü thõa Trang (5) Trắc nghiệm giải tích 12 chương II Câu1: Hàm số y =  x có tập xác định là: A [-1; 1] B (-; -1]  [1; +) C©u2: Hµm sè y =  4x 1  có tập xác định là:  1  ;  B (0; +)) C R\  2  A R D R C R\{-1; 1} 4  1  ;  D  2  4 x  C©u3: Hµm sè y = có tập xác định là: B (-: 2]  [2; +) A [-2; 2]   C©u4: Hµm sè y = A R x  x 1 C©u5: Hµm sè y = x 4x A y’ = x  C©u6: Hµm sè y =  A   1 C R D R\{-1; 1} e B (1; +) 3 có tập xác định là: C (-1; 1) D R\{-1; 1} có đạo hàm là: 4x B y’ =  3 x2   C y’ = 2x x  D y’ =   4x x  2 2x  x  có đạo hàm f’(0) là: B C D Câu7: Cho hàm số y = 2x  x Đạo hàm f’(x) có tập xác định là: A R B (0; 2) C (-;0)  (2; +) D R\{0; 2} a  bx có đạo hàm là: bx bx a  bx 3 A y’ = a  bx B y’ = C©u8: Hµm sè y =  23 C©u9: Cho f(x) = x x §¹o hµm f’(1) b»ng: A B C  3bx 2 23 C y’ = 3bx a  bx 3 D y’ = a  bx D x C©u10: Cho f(x) = x  §¹o hµm f’(0) b»ng: 3 A B C D Câu11: Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng nó xác định?  3 A y = x B y = x C y = x4 D y = x 2 x  2  C©u12: Cho hµm sè y = HÖ thøc gi÷a y vµ y” kh«ng phô thuéc vµo x lµ: A y” + 2y = B y” - 6y2 = C 2y” - 3y = D (y”)2 - 4y = Câu13: Cho hàm số y = x-4 Tìm mệnh đề sai các mệnh đề sau: A Đồ thị hàm số có trục đối xứng B §å thÞ hµm sè ®i qua ®iÓm (1; 1) C Đồ thị hàm số có hai đờng tiệm cận D Đồ thị hàm số có tâm đối xứng -4  Câu14: Trên đồ thị (C) hàm số y = x lấy điểm M0 có hoành độ x0 = Tiếp tuyến (C) điểm M cã ph¬ng tr×nh lµ:      x 1 x  1  x  1 2 A y = B y = C y = x    D y = Trang (6) Trắc nghiệm giải tích 12 chương II   1 Câu15: Trên đồ thị hàm số y = x lấy điểm M0 có hoành độ x0 = Tiếp tuyến (C) điểm M cã hÖ sè gãc b»ng: A  + B 2 C 2 - D Hµm sè mò - hµm sè l«garÝt Câu1: Tìm mệnh đề đúng các mệnh đề sau: A Hàm số y = ax với < a < là hàm số đồng biến trên (-: +) B Hµm sè y = ax víi a > lµ mét hµm sè nghÞch biÕn trªn (-: +) C §å thÞ hµm sè y = ax (0 < a  1) lu«n ®i qua ®iÓm (a ; 1) x  1   D Đồ thị các hàm số y = ax và y =  a  (0 < a  1) thì đối xứng với qua trục tung Câu2: Cho a > Tìm mệnh đề sai các mệnh đề sau: x x A ax > x > B < ax < x < C NÕu x1 < x2 th× a  a x D Trục tung là tiệm cận đứng đồ thị hàm số y = a Câu3: Cho < a < Tìm mệnh đề sai các mệnh đề sau: x x A ax > x < B < ax < x > C NÕu x1 < x2 th× a  a x D Trục hoành là tiệm cận ngang đồ thị hàm số y = a Câu4: Tìm mệnh đề đúng các mệnh đề sau: A Hàm số y = log a x với < a < là hàm số đồng biến trên khoảng (0 ; +) B Hµm sè y = log a x víi a > lµ mét hµm sè nghÞch biÕn trªn kho¶ng (0 ; +) C Hàm số y = log a x (0 < a  1) có tập xác định là R log x log x a a D §å thÞ c¸c hµm sè y = vµ y = (0 < a  1) thì đối xứng với qua trục hoành Câu5: Cho a > Tìm mệnh đề sai các mệnh đề sau: A log a x > x > B log a x < < x < C NÕu x < x th× log a x1  log a x 2 D §å thÞ hµm sè y = log a x cã tiÖm cËn ngang lµ trôc hoµnh Câu6: Cho < a < 1Tìm mệnh đề sai các mệnh đề sau: A log a x > < x < B log a x < x > C NÕu x1 < x2 th× log a x1  log a x D Đồ thị hàm số y = log a x có tiệm cận đứng là trục tung Câu7: Cho a > 0, a  Tìm mệnh đề đúng các mệnh đề sau: A TËp gi¸ trÞ cña hµm sè y = ax lµ tËp R B TËp gi¸ trÞ cña hµm sè y = loga x lµ tËp R C Tập xác định hàm số y = ax là khoảng (0; +) D Tập xác định hàm số y = log a x là tập R ln  x  5x  C©u8: Hµm sè y = có tập xác định là: A (0; +) B (-; 0) C (2; 3) D (-; 2)  (3; +)  ln C©u9: Hµm sè y = A (-; -2)   x2  x   x  có tập xác định là: B (1; +) C (-; -2)  (2; +) D (-2; 2) ln  sin x C©u10: Hµm sè y = có tập xác định là:     R \   k2 , k  Z  R \   k, k  Z  R \    k2, k  Z 2  3  A B C Câu11: Hàm số y =  ln x có tập xác định là: A (0; +)\ {e} B (0; +) C R D (0; e) log5 4x  x C©u12: Hµm sè y = có tập xác định là: A (2; 6) B (0; 4) C (0; +) D R log  x có tập xác định là: C©u13: Hµm sè y = A (6; +) B (0; +) C (-; 6) D R Trang   D R (7) Trắc nghiệm giải tích 12 chương II Câu14: Hàm số nào dới đây đồng biến trên tập xác định nó? x 2 x x 3 0,5   A y = B y =   C y = Câu15: Hàm số nào dới đây thì nghịch biến trên tập xác định nó? log e x log x log x  A y = B y = C y = C©u16: Sè nµo díi ®©y nhá h¬n 1?    e   D y =    x D y = log  x  2 e  3 A   B C©u17: Sè nµo díi ®©y th× nhá h¬n 1? log log   0,   A B x x  2x  e C©u18: Hµm sè y = có đạo hàm là: A y’ = x2ex B y’ = -2xex ex C©u19: Cho f(x) = x §¹o hµm f’(1) b»ng : A e2 B -e C 4e x x e e C©u20: Cho f(x) = §¹o hµm f’(0) b»ng: A B C C©u21: Cho f(x) = ln2x §¹o hµm f’(e) b»ng: A e B e C e ln x  x có đạo hàm là: C©u22: Hµm sè f(x) = x ln x ln x ln x  A x B x C x    C©u23: Cho f(x) = A e C   D e log  e C D log e   ln x  B C y’ = (2x - 2)ex D KÕt qu¶ kh¸c D 6e D D e D KÕt qu¶ kh¸c  §¹o hµm f’(1) b»ng: C D     ln sin 2x C©u24: Cho f(x) = §¹o hµm f’   b»ng: A B C D   f '  ln t anx C©u25: Cho f(x) = §¹o hµm   b»ng: A B C D ln C©u26: Cho y =  x HÖ thøc gi÷a y vµ y’ kh«ng phô thuéc vµo x lµ: A y’ - 2y = B y’ + ey = C yy’ - = D y’ - 4ey = sin2x C©u27: Cho f(x) = e §¹o hµm f’(0) b»ng: A B C D cos2 x C©u28: Cho f(x) = e §¹o hµm f’(0) b»ng: A B C D x C©u29: Cho f(x) = x 1 §¹o hµm f’(0) b»ng: A B ln2 C 2ln2 C©u30: Cho f(x) = tanx vµ (x) = ln(x - 1) TÝnh A -1 B.1 C D KÕt qu¶ kh¸c f '  0  '  0 §¸p sè cña bµi to¸n lµ: D -2 Trang (8) Trắc nghiệm giải tích 12 chương II  ln x  x   C©u31: Hµm sè f(x) = có đạo hàm f’(0) là: A B C D C©u32: Cho f(x) = 2x.3x §¹o hµm f’(0) b»ng: A ln6 B ln2 C ln3 D ln5  x C©u33: Cho f(x) = x  §¹o hµm f’(1) b»ng: A (1 + ln2) B (1 + ln) C ln cos x  sin x ln cos x  sin x có đạo hàm bằng: C©u34: Hµm sè y = D 2ln A cos 2x B sin 2x C cos2x log x  C©u35: Cho f(x) = §¹o hµm f’(1) b»ng: A ln B + ln2 C  D sin2x  D 4ln2 C©u36: Cho f(x) = lg x §¹o hµm f’(10) b»ng: A ln10 B ln10 C 10 D + ln10 x2 C©u37: Cho f(x) = e §¹o hµm cÊp hai f”(0) b»ng: A B C D C©u38: Cho f(x) = x ln x §¹o hµm cÊp hai f”(e) b»ng: A B C D x Câu39: Hàm số f(x) = xe đạt cực trị điểm: A x = e B x = e2 C x = Câu40: Hàm số f(x) = x ln x đạt cực trị điểm: A x = e B x = e C x = e D x = e D x = ax Câu41: Hàm số y = e (a  0) có đạo hàm cấp n là:  n  n  n  n ax n ax ax ax A y e B y a e C y n!e D y n.e Câu42: Hàm số y = lnx có đạo hàm cấp n là: n! n! n 1  n  1 ! n n n n y   n y     1 y   n y    n 1 n x x x x A B C D -x C©u43: Cho f(x) = x e bÊt ph¬ng tr×nh f’(x) ≥ cã tËp nghiÖm lµ: A (2; +) B [0; 2] C (-2; 4] D KÕt qu¶ kh¸c sin x C©u44: Cho hµm sè y = e BiÓu thøc rót gän cña K = y’cosx - yinx - y” lµ: A cosx.esinx B 2esinx C D C©u45: §å thÞ (L) cña hµm sè f(x) = lnx c¾t trôc hoµnh t¹i ®iÓm A, tiÕp tuyÕn cña (L) t¹i A cã ph¬ng tr×nh lµ: A y = x - B y = 2x + C y = 3x D y = 4x - Ph¬ng tr×nh mò vµ ph¬ng tr×nh l«garÝt 3x  16 cã nghiÖm lµ: C©u1: Ph¬ng tr×nh 4 A x = B x = C 2x  x  16 lµ: C©u2: TËp nghiÖm cña ph¬ng tr×nh:  0; 1   2; 2 A  B {2; 4} C D 2x 3 84  x cã nghiÖm lµ: C©u3: Ph¬ng tr×nh D Trang (9) Trắc nghiệm giải tích 12 chương II A B C D x  2 0,125.4 2x      cã nghiÖm lµ: C©u4: Ph¬ng tr×nh A B C D x x x x x x C©u5: Ph¬ng tr×nh:   3   cã nghiÖm lµ: A B C D 2x 6 x 7  17 cã nghiÖm lµ: C©u6: Ph¬ng tr×nh: A -3 B C D x 3 x   26 C©u7: TËp nghiÖm cña ph¬ng tr×nh: lµ:  2; 4  3; 5  1; 3 A B C D  x x x C©u8: Ph¬ng tr×nh:  5 cã nghiÖm lµ: A B C D x x x C©u9: Ph¬ng tr×nh:  2.4 cã nghiÖm lµ: A B C D x C©u10: Ph¬ng tr×nh:  x  cã nghiÖm lµ: A B C D x x Câu11: Xác định m để phơng trình:  2m.2  m  0 có hai nghiệm phân biệt? Đáp án là: A m < B -2 < m < C m > D m   l o g x  l o g  x   1 C©u12: Ph¬ng tr×nh: cã nghiÖm lµ: A B C D 10 lg 54  x C©u13: Ph¬ng tr×nh: = 3lgx cã nghiÖm lµ: A B C D ln x  ln  3x   C©u14: Ph¬ng tr×nh: = cã mÊy nghiÖm? A B C D ln  x  1  ln  x   ln  x   C©u15: Ph¬ng tr×nh: A B C D log x  log x  log x  11 C©u16: Ph¬ng tr×nh: cã nghiÖm lµ: A 24 B 36 C 45 D 64 log x  log  x C©u17: Ph¬ng tr×nh: cã tËp nghiÖm lµ:  A  2; 8   4; 3  4; 16 B C lg x  6x  lg  x    D   C©u18: Ph¬ng tr×nh: cã tËp nghiÖm lµ:  5  3; 4  4; 8 A B C D   C©u19: Ph¬ng tr×nh:  lg x  lg x = cã tËp nghiÖm lµ:  10; 100 A   logx C©u20: Ph¬ng tr×nh: x A  10; 100 1  ; 10    1; 20  B C 10 1000 cã tËp nghiÖm lµ: 1  ; 1000   10; 20    B C 10 D  D  C©u21: Ph¬ng tr×nh: log2 x  log x 3 cã tËp nghiÖm lµ:  4  3  2; 5 A B C D  C©u22: Ph¬ng tr×nh: log x  x  cã tËp nghiÖm lµ: Trang (10) Trắc nghiệm giải tích 12 chương II A  3 B  4 C  2; 5 D  HÖ ph¬ng tr×nh mò vµ l«garÝt x y 2  6  x y 8 C©u1: HÖ ph¬ng tr×nh:  víi x ≥ y cã mÊy nghiÖm? A B C D y 1 x 3  5  x  6.3y  0 C©u2: HÖ ph¬ng tr×nh:  cã nghiÖm lµ:  3;   1; 3  2; 1  4;  A B C D x  2y   x y2 16 C©u3: HÖ ph¬ng tr×nh:  cã mÊy nghiÖm? A B C D 2x  y 4  y 2 x.4 64 C©u4: HÖ ph¬ng tr×nh: cã nghiÖm lµ:  2; 1  4;   C  1;   5;   A B D  x  y 7  C©u5: HÖ ph¬ng tr×nh:  lg x  lg y 1 víi x ≥ y cã nghiÖm lµ? A  4; 3  6; 1  5;  B C D KÕt qu¶ kh¸c lg xy 5  C©u6: HÖ ph¬ng tr×nh: lg x.lg y 6 víi x ≥ y cã nghiÖm lµ? A  100; 10  C©u7: HÖ ph¬ng tr×nh: C  1000; 100     12;   8;  B C 3lg x  lg y 5  C©u10: HÖ ph¬ng tr×nh:  lg x  3lg y 18 cã nghiÖm lµ  100; 1000   1000; 100   50; 40  A B C A D KÕt qu¶ kh¸c víi x ≥ y cã nghiÖm lµ: 2; C D KÕt qu¶ kh¸c  4;  B 2 x.4 y 64  log x  log y 2 C©u8: HÖ ph¬ng tr×nh:  cã nghiÖm lµ:  4;  ,  1;   2;  ,  32; 64  C  4; 16  ,  8; 16  A B  x  y 6  C©u9: HÖ ph¬ng tr×nh:  ln x  ln y 3ln cã nghiÖm lµ: A  3;   500;  B x  y 20  log x  log2 y 3  20; 14  D  4; 1 ,  2;  D  18; 12  D KÕt qu¶ kh¸c BÊt ph¬ng tr×nh mò vµ l«garÝt   x    2  2   lµ: C©u1: TËp nghiÖm cña bÊt ph¬ng tr×nh:   Trang 10 (11) Trắc nghiệm giải tích 12 chương II  0; 1 A  5  1;  B   C©u2: BÊt ph¬ng tr×nh:  A  2;5  2 x  2x B   2; 1 2 x C  2;  D   ;0    cã tËp nghiÖm lµ: C   1; 3 D KÕt qu¶ kh¸c x  3  3       cã tËp nghiÖm lµ: C©u3: BÊt ph¬ng tr×nh:   1;   ;  A  B  C (0; 1) D  x x 1 C©u4: BÊt ph¬ng tr×nh:   cã tËp nghiÖm lµ:  log2 3;    ; log2  A  1;  B  2;  C D x x C©u5: BÊt ph¬ng tr×nh:    cã tËp nghiÖm lµ: A  1;  B   ;1 C   1;1 x x C©u6: BÊt ph¬ng tr×nh: > cã tËp nghiÖm lµ: A   ;0  B  1;  C  0;1 D KÕt qu¶ kh¸c D   1;1 4 x 1 86 2x  4x 5 271x C©u7: HÖ bÊt ph¬ng tr×nh:  cã tËp nghiÖm lµ: A [2; +) B [-2; 2] C (-; 1] D [2; 5]     C©u8: BÊt ph¬ng tr×nh: log 3x   log  5x cã tËp nghiÖm lµ:  6 1   1;   ;3  A (0; +) B   C   D   3;1 log  x    log2  x  1 C©u9: BÊt ph¬ng tr×nh: cã tËp nghiÖm lµ:     1;4 5; A B C (-1; 2) D (-; 1) 2x C©u10: §Ó gi¶i bÊt ph¬ng tr×nh: ln x  > (*), mét häc sinh lËp luËn qua ba bíc nh sau: x  2x 0  Bíc1: §iÒu kiÖn: x    x  (1) 2x 2x 2x 1 Bíc2: Ta cã ln x  >  ln x  > ln1  x  (2) Bíc3: (2)  2x > x -  x > -1 (3)  1 x   Kết hợp (3) và (1) ta đợc  x  VËy tËp nghiÖm cña bÊt ph¬ng tr×nh lµ: (-1; 0)  (1; +) Hỏi lập luận trên đúng hay sai? Nếu sai thì sai từ bớc nào? A Lập luận hoàn toàn đúng B Sai từ bớc C Sai từ bớc D Sai từ bớc log2  2x   log2  x  1  log  3x   log 0,5  2x   C©u11: HÖ bÊt ph¬ng tr×nh:  0,5 cã tËp nghiÖm lµ: A [4; 5] B [2; 4] C (4; +) D  Trang 11 (12)

Ngày đăng: 12/10/2021, 23:10

TỪ KHÓA LIÊN QUAN

w