ĐỀ THI THỬ ĐẠI HOC MÔN TOÁN CÓ ĐÁP ÁN ĐẦY ĐỦ
ĐỀ1 THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) Câu I ( 2,0 điểm): Cho hàm số 2 4 1 x y x − = + . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm trên đồ thị (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(-3; 0) và N(-1; -1). Câu II (2,0 điểm): 1. Giải phương trình: 2 2 1 3 2 1 3 x x x x = + + − + + − 2. Giải phương trình: 2 3 4 2 3 4 sin sin sin sin cos cos cos cosx x x x x x x x + + + = + + + Câu III (1,0 điểm): Tính tích phân: 2 1 ln ln 1 ln e x I x dx x x = + ÷ + ∫ Câu IV (1,0 điểm):Cho hai hình chóp S.ABCD và S’.ABCD có chung đáy là hình vuông ABCD cạnh a. Hai đỉnh S và S’ nằm về cùng một phía đối với mặt phẳng (ABCD), có hình chiếu vuông góc lên đáy lần lượt là trung điểm H của AD và trung điểm K của BC. Tính thể tích phần chung của hai hình chóp, biết rằng SH = S’K =h. Câu V(1,0 điểm): Cho x, y, z là những số dương thoả mãn xyz = 1. Tìm giá trị nhỏ nhất của biểu thức: 9 9 9 9 9 9 6 3 3 6 6 3 3 6 6 3 3 6 x y y z z x P x x y y y y z z z z x x + + + = + + + + + + + + PHẦN RIÊNG(3,0 điểm) Thí sinh chỉ được làm một trong hai phần(phần A hoặc phần B) A. Theo chương trình chuẩn. Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: 2 2 4 3 4 0x y x + + − = . Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A. 2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2; -1), B(7; -2; 3) và đường thẳng d có phương trình 2 3 2 (t R) 4 2 x t y t z t = + = − ∈ = + . Tìm trên d những điểm M sao cho tổng khoảng cách từ M đến A và B là nhỏ nhất. Câu VII.a (1,0 điểm): Giải phương trình trong tập số phức: 2 0z z + = B. Theo chương trình nâng cao. Câu VI.b (2,0 điểm): 1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD: x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian với hệ toạ độ vuông góc Oxyz, cho hai đường thẳng: 2 1 0 3 3 0 ( ) ; ( ') 1 0 2 1 0 x y x y z x y z x y + + = + − + = ∆ ∆ − + − = − + = .Chứng minh rằng hai đường thẳng ( ∆ ) và ( ' ∆ ) cắt nhau. Viết phương trình chính tắc của cặp đường thẳng phân giác của các góc tạo bởi ( ∆ ) và ( ' ∆ ). Câu VII.b (1,0 điểm): Giải hệ phương trình: 2 2 2 3 3 3 log 3 log log log 12 log log x y y x x x y y + = + + = + . -------------------------------- Hết ------------------------ ĐÁP ÁN Câu Nội dung Điểm I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm) CâuI 2.0 1. TXĐ: D = R\{-1} Chiều biến thiên: 2 6 ' 0 x D ( 1) y x = > ∀ ∈ + => hs đồng biến trên mỗi khoảng ( ; 1) −∞ − và ( 1; ) − +∞ , hs không có cực trị 0.25 Giới hạn: 1 1 lim 2, lim , lim x x x y y y − + →±∞ →− →− = = +∞ = −∞ => Đồ thị hs có tiệm cận đứng x= -1, tiệm cận ngang y = 2 BBT x - ∞ -1 + ∞ y’ + + y + ∞ 2 2 - ∞ 0,25 0.25 + Đồ thị (C): Đồ thị cắt trục hoành tại điểm ( ) 2;0 , trục tung tại điểm (0;-4) f(x)=(2x-4)/(x +1) f(x)=2 x(t)=-1 , y (t) =t -6 -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 x y Đồ thị nhận giao điểm 2 đường tiệm cận làm tâm đối xứng 0.25 2. Gọi 2 điểm cần tìm là A, B có 6 6 ;2 ; ;2 ; , 1 1 1 A a B b a b a b − − ≠ − ÷ ÷ + + 0.25 Trung điểm I của AB: I 2 2 ; 2 1 1 a b a b a b + − − + ÷ + + Pt đường thẳng MN: x + 2y +3= 0 0.25 Có : . 0AB MN I MN = ∈ uuur uuuur 0.25 => 0 (0; 4) 2 (2;0) a A b B = − => = 0,25 CâuII 2.0 1. TXĐ: x [ ] 1;3 ∈ − 0,25 Đặt t= 1 3 , t > 0x x + + − => 2 2 4 3 2 2 t x x − + − = 0,25 đc pt: t 3 - 2t - 4 = 0 ó t=2 0,25 Với t = 2 ó 1 1 3 =2 ( / ) 3 x x x t m x = − + + − ⇔ = 0,25 2. 2 3 4 2 3 4 sin sin sin sin cos cos cos cosx x x x x x x x + + + = + + + 1,0 TXĐ: D =R 2 3 4 2 3 4 sin sin sin sin cos cos cos cosx x x x x x x x + + + = + + + [ ] sin 0 (sin ). 2 2(sin ) sin . 0 2 2(sin ) sin . 0 x cosx x cosx x cosx x cosx x cosx x cosx − = ⇔ − + + + = ⇔ + + + = 0,25 + Với sin 0 ( ) 4 x cosx x k k Z π π − = ⇔ = + ∈ 0,25 + Với 2 2(sin ) sin . 0x cosx x cosx + + + = , đặt t = sin (t 2; 2 )x cosx + ∈ − được pt : t 2 + 4t +3 = 0 1 3( ) t t loai = − ⇔ = − 0.25 t = -1 2 ( ) 2 2 x m m Z x m π π π π = + ⇒ ∈ = − + Vậy : ( ) 4 2 ( ) 2 2 x k k Z x m m Z x m π π π π π π = + ∈ = + ∈ = − + 0,25 Câu III 2 1 ln ln 1 ln e x I x dx x x = + ÷ + ∫ 1,0 I 1 = 1 ln 1 ln e x dx x x + ∫ , Đặt t = 1 ln x+ ,… Tính được I 1 = 4 2 2 3 3 − 0,5 ( ) 2 2 1 ln e I x dx = ∫ , lấy tích phân từng phần 2 lần được I 2 = e - 2 0,25 I = I 1 + I 2 = 2 2 2 3 3 e − − 0,25 Câu IV 1,0 M N A B D C S S' H K SABS’ và SDCS’ là hình bình hành => M, N là trung điểm SB, S’D : . .S ABCD S AMND V V V= − 0,25 . . .S AMND S AMD S MND V V V= + ; . . . . 1 1 ; . ; 2 4 S AMD S MND S ABD S BCD V V SM SM SN V SB V SB SC = = = = 0.25 . . . 1 2 S ABD S ACD S ABCD V V V = = ; . . . 3 5 8 8 S AMND S ABCD S ABCD V V V V = ⇒ = 0.25 2 5 24 V a h ⇒ = 0.25 CâuV Có x, y, z >0, Đặt : a = x 3 , b = y 3 , c = z 3 (a, b, c >0 ; abc=1)đc : 3 3 3 3 3 3 2 2 2 2 2 2 a b b c c a P a ab b b bc c c ca a + + + = + + + + + + + + 0.25 3 3 2 2 2 2 2 2 ( ) a b a ab b a b a ab b a ab b + − + = + + + + + mà 2 2 2 2 1 3 a ab b a ab b − + ≥ + + (Biến đổi tương đương) 2 2 2 2 1 ( ) ( ) 3 a ab b a b a b a ab b − + => + ≥ + + + 0.25 Tương tự: 3 3 3 3 2 2 2 2 1 1 ( ); ( ) 3 3 b c c a b c c a b bc c c ca a + + ≥ + ≥ + + + + + => 3 2 ( ) 2. 2 3 P a b c abc ≥ + + ≥ = (BĐT Côsi) 0.25 => P 2, 2 khi a = b = c = 1 x = y = z = 1P ≥ = ⇔ Vậy: minP = 2 khi x = y =z =1 0.25 II. PHẦN RIÊNG(3,0 điểm) A. Chương trình chuẩn CâuVI .a 2.0 1. A(0;2), I(-2 3 ;0), R= 4, gọi (C’) có tâm I’ 0,25 Pt đường thẳng IA : 2 3 2 2 x t y t = = + , 'I IA ∈ => I’( 2 3 ;2 2t t + ), 0,25 1 2 ' '( 3;3) 2 AI I A t I = ⇔ = => uur uuur 0,25 (C’): ( ) ( ) 2 2 3 3 4x y− + − = 0.25 2. M(2+ 3t; - 2t; 4+ 2t) d ∈ , AB//d. 0.25 Gọi A’ đối xứng với A qua d => MA’= MA => MA+ MB = MA’ + MB ≥ A’B (MA+ MB) min = A’B, khi A’, M, B thẳng hàng => MA = MA’ = MB 0.25 0,25 MA=MB <=> M(2 ; 0 ; 4) 0,25 CâuVI I.a 1.0 z = x + iy ( ,x y R ∈ ), z 2 + 2 2 2 2 0 2 0z x y x y xyi = ⇔ − + + + = 0,25 2 2 2 2 2 0 0 xy x y x y = ⇔ − + + = 0,25 (0;0); (0;1) ; (0;-1). Vậy: z = 0, z = i, z = - i 0,5 B. Chương trình nâng cao Câu 2.0 VI.b 1. (7;3)BD AB B ∩ = , pt đg thẳng BC: 2x + y – 17 = 0 (2 1; ), ( ;17 2 ), 3, 7A AB A a a C BC C c c a c ∈ ⇒ + ∈ ⇒ − ≠ ≠ , I = 2 1 2 17 ; 2 2 a c a c + + − + ÷ là trung điểm của AC, BD. 0,25 I 3 18 0 3 18 (6 35;3 18)BD c a a c A c c ∈ ⇔ − − = ⇔ = − ⇒ − − 0,25 M, A, C thẳng hàng ó ,MA MC uuur uuuur cùng phương => c 2 – 13c +42 =0 ó 7( ) 6 c loai c = = 0,25 c = 6 =>A(1;0), C(6;5) , D(0;2), B(7;3) 0.25 2. Chứng minh hệ có nghiệm duy nhất, ( ∆ ) ∩ ( ' ∆ ) = A 1 3 ;0; 2 2 − ÷ 0.5 (0; 1;0) ( )M − ∈ ∆ , Lấy N ( ') ∈ ∆ , sao cho: AM = AN => N AMN ∆ cân tại A, lấy I là trung điểm MN => đường phân giác của các góc tạo bởi ( ∆ ) và ( ' ∆ ) chính là đg thẳng AI 0.25 Đáp số: 1 2 1 3 1 3 2 2 2 2 ( ) : ;( ) : 1 1 2 2 3 5 1 1 2 2 3 5 14 30 14 30 14 30 14 30 14 30 14 30 x z x z y y d d + − + − = = = = − − − − + + + − − − 0,25 Câu VII.b TXĐ: 0 0 x y > > 0.25 2 2 2 3 3 3 log 3 log log 3 . 2 . log 12 log log 12 . 3 . x y x y x y y x y x x x y y x y + = + = ⇔ + = + = 0.25 2 3 . 2 . x y y x y x = ⇔ = 0.25 4 3 4 3 log 2 2log 2 x y = ⇔ = (t/m TXĐ) 0,25 ĐỀ 2 THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2 1 1 x y x − = − 2. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng 2 . Câu II (2 điểm) 1) Giải phương trình 2 17 sin(2 ) 16 2 3.sin cos 20sin ( ) 2 2 12 x x x x π π + + = + + 2) Giải hệ phương trình : 4 3 2 2 3 2 1 1 x x y x y x y x xy − + = − + = − Câu III (1 điểm): Tính tích phân: I = 4 0 tan .ln(cos ) cos x x dx x π ∫ Câu IV (1 điểm): Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân tại đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60 0 . Tính côsin của góc giữa hai mặt phẳng (SAB) và (SBC) . Câu V: (1 điểm) Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng: 3 a b b c c a ab c bc a ca b + + + + + ≥ + + + PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (1 điểm) Trong mặt phẳng tọa độ Oxy cho điểm A(1;1) và đường thẳng ∆ : 2x + 3y + 4 = 0. Tìm tọa độ điểm B thuộc đường thẳng ∆ sao cho đường thẳng AB và ∆ hợp với nhau góc 45 0 . Câu VII.a (1 điểm): Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-1;1) và hai đường thẳng 1 ( ) : 1 2 3 x y z d + = = − − và 1 4 ( ') : 1 2 5 x y z d − − = = Chứng minh: điểm M, (d), (d’) cùng nằm trên một mặt phẳng. Viết phương trình mặt phẳng đó. Câu VIII.a (1 điểm) Giải phương trình: 2 2 2 (24 1) (24 1) (24 1) log log + + + + = x x x x x log x x x Theo chương trình Nâng cao Câu VI.b (1 điểm) Trong mặt phẳng tọa độ Oxy cho đường tròn 2 2 ( ) : 1C x y+ = , đường thẳng ( ) : 0d x y m + + = . Tìm m để ( )C cắt ( )d tại A và B sao cho diện tích tam giác ABO lớn nhất. Câu VII.b (1 điểm) Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng: (P): 2x – y + z + 1 = 0, (Q): x – y + 2z + 3 = 0, (R): x + 2y – 3z + 1 = 0 và đường thẳng 1 ∆ : 2 2 − − x = 1 1 + y = 3 z . Gọi 2 ∆ là giao tuyến của (P) và (Q). Viết phương trình đường thẳng (d) vuông góc với (R) và cắt cả hai đường thẳng 1 ∆ , 2 ∆ . Câu VIII.b (1 điểm) Giải bất phương trình: log x ( log 3 ( 9 x – 72 )) ≤ 1 ----------Hết--------- ĐÁP ÁN VÀ THANG ĐIỂM Câu - ý Nội dung Điểm 1.1 *Tập xác định : { } \ 1D = ¡ *Tính 2 1 ' 0 ( 1) y x D x − = < ∀ ∈ − Hàm số nghịch biến trên các khoảng ( ;1) −∞ và (1; ) +∞ *Hàm số không có cực trị *Giới hạn 1x Lim y + → = +∞ 1x Lim y − → = −∞ 2 x Lim y →+∞ = 2 x Lim y →−∞ = Đồ thị có tiệm cận đứng :x=1 , tiệm cận ngang y=2 *Bảng biến thiên *Vẽ đồ thị 0.25 0.25 0.25 0.25 1.2 *Tiếp tuyến của (C) tại điểm 0 0 ( ; ( )) ( )M x f x C∈ có phương trình 0 0 0 '( )( ) ( )y f x x x f x= − + Hay 2 2 0 0 0 ( 1) 2 2 1 0x x y x x + − − + − = (*) *Khoảng cách từ điểm I(1;2) đến tiếp tuyến (*) bằng 2 0 4 0 2 2 2 1 ( 1) x x − ⇔ = + − giải được nghiệm 0 0x = và 0 2x = *Các tiếp tuyến cần tìm : 1 0x y + − = và 5 0x y + − = 0.25 0.25 0.25 0.25 2.1 *Biến đổi phương trình đã cho tương đương với os2 3sin 2 10 os( ) 6 0 6 c x x c x π − + + + = os(2 ) 5 os( ) 3 0 3 6 c x c x π π ⇔ + + + + = 2 2 os ( ) 5 os( ) 2 0 6 6 c x c x π π ⇔ + + + + = Giải được 1 os( ) 6 2 c x π + = − và os( ) 2 6 c x π + = − (loại) *Giải 1 os( ) 6 2 c x π + = − được nghiệm 2 2 x k π π = + và 5 2 6 x k π π = − + 0.25 0.25 0.25 0.25 2.2 *Biến đổi hệ tương đương với 2 2 3 3 2 ( ) 1 ( ) 1 x xy x y x y x xy − = − − − = − *Đặt ẩn phụ 2 3 x xy u x y v − = = , ta được hệ 2 1 1 u v v u = − − = − *Giải hệ trên được nghiệm (u;v) là (1;0) và (-2;-3) *Từ đó giải được nghiệm (x;y) là (1;0) và (-1;0) 0.25 0.25 0.25 0.25 3 *Đặt t=cosx Tính dt=-sinxdx , đổi cận x=0 thì t=1 , 4 x π = thì 1 2 t = Từ đó 1 1 2 2 2 1 1 2 ln lnt t I d t dt t t = − = ∫ ∫ *Đặt 2 1 ln ;u t dv dt t = = 1 1 ;du dt v t t ⇒ = = − Suy ra 1 2 1 2 1 1 1 1 2 1 ln ln 2 1 1 2 2 2 I t dt t t t = − + = − − ∫ *Kết quả 2 2 1 ln 2 2 I = − − 0.25 0.25 0.25 0.25 4 *Vẽ hình *Gọi H là trung điểm BC , chứng minh ( )SH A B C ⊥ *Xác định đúng góc giữa hai mặt phẳng (SAB) , (SAC) với mặt đáy là 0 60SEH SFH = = *Kẻ HK S B ⊥ , lập luận suy ra góc giữa hai mặt phẳng (SAB) và (SBC) bằng HK A . *Lập luận và tính được AC=AB=a , 2 2 a HA = , 0 3 tan 60 2 a SH HF = = *Tam giác SHK vuông tại H có 2 2 2 1 1 1 3 10 K H a H K HS HB = + ⇒ = *Tam giác AHK vuông tại H có 2 20 2 tan 3 3 10 a A H A K H K H a = = = 3 cos 23 A K H ⇒ = 0.25 0.25 0.25 0.25 5 *Biến đổi 1 1 1 (1 )(1 ) a b c c ab c ab b a a b + − − = = + + − − − − *Từ đó 1 1 1 (1 )(1 ) (1 )(1 ) (1 )(1 ) c b a V T a b c a c b − − − = + + − − − − − − Do a,b,c dương và a+b+c=1 nên a,b,c thuộc khoảng (0;1) => 1-a,1-b,1-c dương *áp dụng bất đẳng thức Côsi cho ba số dương ta được 3 1 1 1 3. . . (1 )(1 ) (1 )(1 ) (1 )(1 ) c b a V T a b c a c b − − − ≥ − − − − − − =3 (đpcm) Đẳng thức xảy ra khi và chỉ khi 1 3 a b c = = = 0.25 0.25 0.25 0.25 6.a * ∆ có phương trình tham số 1 3 2 2 x t y t = − = − + và có vtcp ( 3;2)u = − ur *A thuộc ∆ (1 3 ; 2 2 )A t t ⇒ − − + 0.25 *Ta có (AB; ∆ )=45 0 1 os( ; ) 2 c A B u⇔ = uuuur ur . 1 2 . A B u A B u ⇔ = uuuur ur ur 2 15 3 169 156 45 0 13 13 t t t t ⇔ − − = ⇔ = ∨ = − *Các điểm cần tìm là 1 2 32 4 22 32 ( ; ), ( ; ) 13 13 13 13 A A − − 0.25 0.25 0.25 7.a *(d) đi qua 1 (0; 1;0)M − và có vtcp 1 (1; 2; 3)u = − − uur (d’) đi qua 2 (0;1;4)M và có vtcp 2 (1;2;5)u = uur *Ta có 1 2 ; ( 4; 8;4)u u O = − − ≠ uur uur ur , 1 2 (0;2;4)M M = uuuuuuur Xét 1 2 1 2 ; . 16 14 0u u M M = − + = uur uur uuuuuuur (d) và (d’) đồng phẳng . *Gọi (P) là mặt phẳng chứa (d) và (d’) => (P) có vtpt (1;2; 1)n = − ur và đi qua M 1 nên có phương trình 2 2 0x y z + − + = *Dễ thấy điểm M(1;-1;1) thuộc mf(P) , từ đó ta có đpcm 0.25 0.25 0.25 0.25 8.a *Điều kiện :x>0 *TH1 : xét x=1 là nghiệm *TH2 : xét 1x ≠ , biến đổi phương trình tương đương với 1 2 1 1 2log (24 1) 2 log (24 1) log (24 1) x x x x x x + = + + + + + Đặt log ( 1) x x t+ = , ta được phương trình 1 2 1 1 2 2t t t + = + + giải được t=1 và t=-2/3 *Với t=1 log ( 1) 1 x x⇒ + = phương trình này vô nghiệm *Với t=-2/3 2 log ( 1) 3 x x ⇒ + = − 2 3 .(24 1) 1x x⇔ + = (*) Nhận thấy 1 8 x = là nghiệm của (*) Nếu 1 8 x > thì VT(*)>1 Nếu 1 8 x < thì VT(*)<1 , vậy (*) có nghiệm duy nhất 1 8 x = *Kết luận : Các nghiệm của phương trình đã cho là x=1 và 1 8 x = 0.25 0.25 0.25 0.25 6.b *(C) có tâm O(0;0) , bán kính R=1 *(d) cắt (C) tại hai điểm phân biệt ( ; ) 1d O d ⇔ < *Ta có 1 1 1 . .sin .sin 2 2 2 O A B S O A O B A O B A O B = = ≤ Từ đó diện tích tam giác AOB lớn nhất khi và chỉ khi 0 90A O B = 1 ( ; ) 2 d I d⇔ = 1m ⇔ = ± 0.25 0.25 0.25 0.25 7.b * 1 ∆ có phương trình tham số 2 2 1 3 x t y t z t = − = − + = * 2 ∆ có phương trình tham số 2 5 3 x s y s z s = + = + = *Giả sử 1 2 ;d A d B∩ ∆ = ∩∆ = (2 2 ; 1 ;3 ) B(2+s;5+3s;s)A t t t ⇒ − − + * ( 2 ;3 6; 3 )A B s t s t s t = + − + − uuuur , mf(R) có vtpt (1;2; 3)n = − ur * ( ) &d R A B n ⊥ ⇔ uuuur ur cùng phương 2 3 6 3 1 2 3 s t s t s t + − + − ⇔ = = − 23 24 t⇒ = *d đi qua 1 1 23 ( ; ; ) 12 12 8 A và có vtcp (1;2; 3)n = − ur => d có phương trình 23 1 1 8 12 12 1 2 3 z x y − − − = = − 0.25 0.25 0.25 0.25 8.b *Điều kiện : 3 0 log (9 72) 0 9 72 0 x x x > − > − > giải được 9 log 73x > Vì 9 log 73x > >1 nên bpt đã cho tương đương với 3 log (9 72) x x − ≤ 9 72 3 x x ⇔ − ≤ 3 8 3 9 x x ≥ − ⇔ ≤ 2x ⇔ ≤ *Kết luận tập nghiệm : 9 (log 72;2]T = 0.25 0.25 0.25 0.25 ĐỀ3 THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2012-2013 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) [...]... trỡnh nõng cao 100 0 1 2 100 1 Ta cú: ( 1 + x ) = C100 + C100 x + C100 x 2 + + C100 x100 (1) ( 1 x) 100 0 1 2 3 100 = C100 C100 x + C100 x 2 C100 x 3 + + C100 x100 (2) 0,25 0,25 0,25 0,25 Ly (1)+(2) ta c: ( 1+ x) 100 + (1 x) 100 0 2 4 100 = 2C100 + 2C100 x 2 + 2C100 x 4 + + 2C100 x100 Ly o hm hai v theo n x ta c 100 ( 1 + x ) 100 ( 1 x ) 99 99 2 4 100 = 4C100 x + 8C100 x 3 + + 200C100 x 99 Thay... I ( P)) = 4 025 Vy cú hai mt phng : 2x-y+2z+3=0 v 2x-y+2z-21=0 025 10 Ta cú 10 k k =0 k =0 Theo gi thit ta cú k + i = 4 i = 0 i = 1 i = 2 0 i k 10 k = 4 k = 3 k = 2 i, k N Vy h s ca x 4 l: 05 i =0 k k P = (1 + 2 x + 3 x 2 )10 = C10 (2 x + 3 x 2 ) k = ( C10Cki 2k i3i x k +i ) 025 025 4 3 1 2 2 C10 24 + C10C3 223 + C10C2 32 = 8085 1 Ta cú PT ng thng AB:2x+3y=0 x2 y2 Gi C(x;y) vi x>0,y>0.Khi... chng trỡnh nõng cao Cõu VI.b (2 im) 2 4 6 100 1 Tớnh giỏ tr biu thc: A = 4C100 + 8C100 + 12C100 + + 200C100 2 Cho hai ng thng cú phng trỡnh: x2 z +3 d1 : = y +1 = 3 2 x = 3 + t d 2 : y = 7 2t z = 1 t Vit phng trỡnh ng thng ct d1 v d2 ng thi i qua im M(3 ;10; 1) Cõu VII.b (1 im) Gii phng trỡnh sau trờn tp phc: z2+3(1+i)z-6-13i=0 -Ht P N THI TH I HC MễN TOAN NM 2012-2013 PHN CHUNG... r => MA = ( 2; 10; 2 ) x = 3 + 2t Phng trỡnh ng thng AB l: y = 10 10t z = 1 2t 2 0,25 0,25 0,25 0,25 0,25 = 7 + 5i hoc z = 2 + i => z = 5 4i = 7 5i 4 THI TH I HC MễN TOAN NM 2012-2013 A.PHN CHUNG CHO TT C CC TH SINH (7 im): Cõu I (2 im): Cho hm s y = x 3 3mx 2 + 3(m 2 1) x m3 + m (1) 1.Kho sỏt s bin thi n v v th ca hm s (1) ng vi m=1 2.Tỡm m hm s (1) cú cc tr ng thi khong cỏch... n x ta c 100 ( 1 + x ) 100 ( 1 x ) 99 99 2 4 100 = 4C100 x + 8C100 x 3 + + 200C100 x 99 Thay x=1 vo 2 4 100 => A = 100 .299 = 4C100 + 8C100 + + 200C100 Gi ng thng cn tỡm l d v ng thng d ct hai ng thng d1 v d2 ln lt ti im A(2+3a;-1+a;-3+2a) v B(3+b;7-2b;1-b) uuu r uuu r Do ng thng d i qua M(3 ;10; 1)=> MA = k MB 0,25 0,25 0,25 0,25 uuu r uuu r MA = ( 3a 1; a 11; 4 + 2a ) , MB = ( b; 2b 3; b )... 1) 3n +1 = 243 n = 4 05 05 Vy n=4 S Giỏo Dc & o To Thỏi Bỡnh Trng THPT Trn Quc Tun 3 2 ; 2) 2 Kỡ thi th i hc ln V nm hc 2012-2013 (Thi gian lm bi 180 phỳt khụng k thi gian giao ) Mụn thi : Toỏn Ngy thi 13-04-2013 chớnh thc Cõu 1(2,0 im) Cho hm s y = x 3 2 x 2 (m 1) x + m (1) a Kho sỏt s bin thi n v v th hm s khi m=1 b Trong trng hp hm s (1) ng bin trong tp s thc, tỡm m din tớch hỡnh phng... dng v n 3 n! n! n! 1 3 2 + =2 Ta cú Cn + Cn = 2Cn n2 9n + 14 = 0 n = 7 1!(n 1)! 3!(n 3)! 2!(n 2)! 5 Ta cú s hng th 6 : C7 ( 2lg (103 x ) )( 2 5 2( x 2) lg3 ) 5 = 21 21.2 lg (10 3x ) 2(x 2)lg3 = 21 x = 0 lg (10 3x) + lg3(x 2) = 0 (10 3x)3x 2 = 1 32x - 10. 3x + 9 = 0 x = 2 3 3 2 Gi = r( cos + isin) = r ( cos3 + isin3) r = 3 3 2 2 r = 3 3 + sin Ta cú: r3( cos3 + isin3) = 3 cos... H(1;1;1).Vit phng trỡnh mt phng (P) i qua hai in A v H ng thi ct Oy,Oz ln lt ti hai im B,C khỏc gc to O sao cho din tớch VABC bng 4 6 Cõu 9 (1,0 im) Cho cỏc s thc dng a,b,c tho món iu kin 12 21ab+2bc+8ca Tỡm giỏ tr nh nht cabiu thc P= 1+2+3 a b c Thớ sinh khụng c s dng ti liu Giỏo viờn coi thi khụng gii thớch gỡ thờm 5 THI TH I HC, CAO NG NM 2012 -2013 Mụn thi : TON Cõu I: (2,0 im) Cho hm s y = x 3 3x... ==> M(2;0;4) II PHN RIấNG: 1) Theo cng trỡnh chun: Cõu 6a: 1 Gi A l bin c: ba on thng ly ra lp thnh mt tam giỏc Cỏc kh nng chn c ba on thng lp thnh mt tam giỏc {4;6;8}, {4;8 ;10} , {6;8 ;10} 3 3 Vy: n() = C5 = 10 ; n(A) = 3 ==> P(A) = 10 2 x 0 x > 1 y 0 y 0 x = 9 x x 8 y = x + y y x ( x 1) = y ( y + 8) 2 2 2 x y = 5 y = x 5 y = 4 x( x 1) = y ( y + 8) 3 x 22 x 45 = 0 y = x5 y = x5... // vi ng thng 3x+y-2=0) Vỡ ng thng ct ng trũn theo mt dõy cung cú di bng 6=> khong cỏch t tõm I n bng 52 32 = 4 1 VI.a c = 4 10 1 =4 (tha món c2) 32 + 1 c = 4 10 1 Vy phng trỡnh ng trũn cn tỡm l: 3x + y + 4 10 1 = 0 hoc 0,25 0,25 3 + 4 + c d ( I , ) = 3 x + y 4 10 1 = 0 uuu r Ta cú AB = ( 1; 4; 3) 0,25 0,25 x = 1 t Phng trỡnh ng thng AB: y = 5 4t z = 4 3t 2 0,25 di on CD ngn . VI.b 1 Ta có: ( ) 100 0 1 2 2 100 100 100 100 100 100 1 .x C C x C x C x + = + + + + (1) ( ) 100 0 1 2 2 3 3 100 100 100 100 100 100 100 1 .x C C x. ( ) 99 99 2 4 3 100 99 100 100 100 100 1 100 1 4 8 . 200x x C x C x C x + − − = + + + Thay x=1 vào => 99 2 4 100 100 100 100 100 .2 4 8 . 200A C C