TRƯỜNG THPT THUẬN THÀNH SÔ 1 ĐỀ KHẢO SÁT CHẤT LƯỢNG LUYỆN THIĐẠIHỌC LẦN 1 - NĂM HỌC 2012-2013 Ngày kiểm tra:06/1/2013 Môn: TOÁN Thời gian làm bài : 180 phút PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y = 4 3 4 )3( 23 mxxmx 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi 0m . 2) Tìm các giá trị của m để hàm số đồng biến trên khoảng (0:+ ). Câu II (2 điểm) 1) Giải phương trình 4 2sin213coscos xxx 2) Giải phương trình sau : )12(1372165 22 xxxxxx . ( x R). Câu III (1 điểm) Tính tích phân dx x xx 10 5 2 12 Câu IV (1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,AC=a, BC =2a. Mặt phẳng (SAC) tạo với mặt đáy (ABC) góc 60 0 . Hình chiếu H của S trên mf(ABC) là trung điểm cạnh BC.Tính thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng HA và SB theo a. Câu V (1 điểm) Cho các số thực dương a, b, c . Tìm giá trị nhỏ nhất của biểu thức sau: 3 2 3 P . a ab abc a b c PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A) Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có diện tích bằng 12 và tâm I là giao điểm của hai đường thẳng 1 2 : 3 0; : 6 0d x y d x y . Trung điểm của AD là giao điểm của d 1 và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật ABCD . 2) Trong không gian tọa độ Oxyz, cho hình chóp tam giác đều S.ABC có điểm A(5;3;-1), B(2;3;-4), C(1;2;0), cạnh bên có độ dài 7 . Viết phương trình mặt cầu ngoại tiếp hình chóp S.ABC biết S có tung độ <2. Câu VII.a (1 điểm) Chọn ngẫu nhiên 1 số từ tập các số tự nhiên có 3 chữ số khác nhau và khác 0. Tính xác suất để số được chọn là số chia hết cho 3. B) Theo chương trình nâng cao. Câu VI.b (2 điểm) 1)Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có B(1;5) và đường cao AH có phương trình 022 yx ,với H thuộc BC; đường phân giác trong của góc ACB có phương trình là 01 yx . Tìm toạ độ các đỉnh A, C, D . 2) Trong không gian Oxyz cho điểm A(3; -2; -2) và mặt phẳng : 1 0P x y z . Viết phương trình mặt phẳng (Q) đi qua A, vuông góc với mặt phẳng (P) biết rằng mặt phẳng (Q) cắt hai trục Oy, Oz lần lượt tại điểm phân biệt M và N sao cho OM = ON. Câu VII.b (1 điểm) Giải phương trình: 3 3 log x log x 2x 10 1 10 1 3 . Cảm ơn cô Thúy (thuy79@gmail.com ) gửi tới www.laisac.page.tl HƯỚNG DẪN CHẤM ĐIỂM Câu ý Nội dung Điểm Khảo sát sự biến thiên, vẽ đồ thị hàm số 3 2 3 4y x x 1,0 - TXĐ : R 2 0 ' 3 6 0 2 x y x x x - Hàm số đông biến trên mỗi khoảng ( ;0);(2; ) - Hàm số ngịch biến trên khoảng (0; 2) 0,25 - Cực trị : Hàm số đạt CĐ tại 1 D 0; 4 C x y , hàm số đạt CT tại 2 2; 0 CT x y - Giới hạn : 3 2 3 2 lim ( 3 2) ; lim ( 3 2) ; x x x x x x - Hàm số không có tiệm cận. 0,25 - BBT : x 0 2 y’ + 0 0 + y 4 0 0,25 1 - Đồ thị 6 4 2 -2 -4 -10 -5 5 10 0,25 Tìm các giá trị của m để hàm số đồng biến trên khoảng (0;+) 1,0 Câu I 2 y’= 3x 2 - 2(3-m)x+ 3 4 m. Hàm số đồng biến trên khoảng (0;+ ) khi 0,0' xy y’ là tam thức bậc 2 có hệ số a > 0, ' m 2 -10m +9 . 0,0' xy có 2 trường hợp 0,25 TH1: 9;10' m Khi đó y’ x,0 0,25 TH2: Tam thức có hai nghiệm phân biệt x 1 < x 2 0 0 03 0910 0 0 0 2 m m mm P S 9 m 0,25 Từ 2 trường hợp trên ta có m ;1 thỏa mãn yêu cầu bài toán. Chú ý : Học sinh có thể sử dụng hàm số để gải bài toán trên. Điều kiện 0,0' xy mxgMaxxxg x xx m x 2)(0),( 23 189 2 0 2 0,25 Giải phương trình 4 2sin213coscos xxx 1,0 Ta có: xxxxxxx 2cos2sin12coscos2 4 2sin213coscos 02coscos2cossin2cos2 2 xxxxx 0,25 0)cossin1)(sin(coscos0)sin(cossincoscos2 22 xxxxxxxxxx 0,25 2 1 4 cos 1tan 2 1sincos 0sincos 0cos x x kx xx xx x 0,25 1 Zk kx kx kx , 2 4 2 0,25 Giải phương trình : )12(13)72)1(6(5 22 xxxxxx . ( x R). 1,0 Đặt: 0,, 2 1 12 72 6 22 22 2 2 vu uv x uvx xxv xu 0,25 Ta có: Pt (1) thành: )(05)(26)(5 )( ))((261)(5 )(131 2 1 5 2 1 5 2 2 22 2222 bvuvu avu uvvuuvuv uvv uv u uv 0,25 Câu II 2 0,25 2 1 726)( 22 xxxxa Xét (b) 5 1 5 vu vu . Nhưng ta có: u+v = 5726 22 xxx , dáu bằng xảy ra khi x = 2 1 . Vậy phương trình đã cho có nghiệm duy nhất x= 2 1 0,25 Tính tích phân : dx x xx 10 5 2 12 1,0 Đặt 2 2 2 1 1 1 udu dx u x u x x u , đổi cận : : 5 10 : 2 3 x u 0,25 Ta có : 3 3 3 2 2 3 3 2 2 2 2 2 2 2 ( 3) .2 4 1 2. ( 4 ) 2( 4 ) 8 3 1 1 1 u u udu du I u du u u u u u 0,25 Câu III 3 3 2 2 62 1 1 62 1 4 ( ) 4ln 3 1 1 3 1 u I du u u u 62 3 4ln 3 2 I 0,5 Tính thể tích khối chóp S.ABC và khoảng cách từ B tới mặt phẳng (SAC) theo a. 1,0 - - ABC vuông tại A có BC = 2a; AC = a khi đó - Góc B = 30 0 , C = 60 0 . Gọi N là hình chiếu của H trên AC thì N cũng là trung điểm Của AC. Khi đó ta có AC vuông góc với (SNH) nên góc giữa (SAC) và (ABC) là góc SNH = 60 0 Trong tam giác vuông SHN ta tính được HN = 2 3a Và SH là 2 3a - 0,25 - Diện tích tam giác ABC là S = 2 3 2 1 2 a ABAC - Thể tích khối chóp S.ABC là V = 4 3 . 3 1 3 a SSH 0,25 Câu IV Qua B kẻ đường thẳng a song song với AH, gọi M là hình chiếu của H trên a và K là hình chiếu của H trên SM. Ta có AH //(SBM) và K là hình chiếu của H trên (SBM) Nên khoảng cách giữa SB và AH bằng độ dài đoạn HK 0,25 H C A B S M N Ta có tam giác ACH đều nên góc HBM bằng 60 0 2 3 60sin 0 a HBHM Trong tam giác vuông SHM có: 4 3 9 16 9 4 3 4111 222222 a HK aaaHSHMHK Vậy khoảng cách gữa hai đường thẳng AH và SB là 4 3a . 0,25 3 2 3 P . a ab abc a b c 1,00 Áp dụng bất đẳng thức Côsi ta có 3 1 a 4b 1 a 4b 16c 4 a ab abc a . . a b c 2 2 4 3 3 . Đẳng thức xảy ra khi và chỉ khi a 4b 16c . 0,25 Suy ra 3 3 P 2 a b c a b c Đặt t a b c, t 0 . Khi đó ta có: 3 3 P 2t t 0,25 Xét hàm số 3 3 f t 2t t với t 0 ta có 2 3 3 f ' t 2t 2t t . 2 3 3 f ' t 0 0 t 1 2t 2t t Đặt Bảng biến thiên t 0 1 f ' t 0 + f t 0 3 2 Do đó ta có t 0 3 minf t 2 khi và chỉ khi t 1 0,25 Câu V đẳng thức xảy ra khi và chỉ khi 16 a 21 a b c 1 4 b a 4b 16c 21 1 c 21 . 0,25 Vậy giá trị nhỏ nhất của P là 3 2 khi và chỉ khi 16 4 1 a,b,c , , 21 21 21 . Tìm tọa độ các đỉnh của hình chữ nhật ABCD. 1,0 Tọa độ 9 3 ( ; ) 2 2 I ,M là trung điểm AD thì (3;0)M Ta có 3 2 2 IM và 2 3 2AB IM Vì . 12 2 2 ABCD S AB AD AD 0,25 AD đi qua (3;0)M và vuông góc với IM nên có phương trình 3 0x y Gọi ( ; 3)A x x ta có 2MA 2 (2;1) 4 (4; 1) x A x A 0,25 - Với (2;1)A ta có (4; 1); (7;2); (5;4)D C B - Với (4; 1)A ta có (2;1)D và (7;2); (5;4)B C 0,25 1 Vậy (2;1)A ; (5;4); (7;2); (4; 1)B C D hoặc (4; 1)A ; (7;2); (5;4)B C ; (2;1)D 0,25 Viết phương trình mặt cầu… 1,0 AB=AC=BC= 32 , 3 5 ; 3 8 ; 3 8 G là trọng tâm của tam giác ABC.Do S.ABC đều nên G là hình chiếu của S trên mf(ABC). AG = 2, SG = 3 22 AGSA 0,25 3;15;3, ACAB nên SG có véc tơ chỉ phương là 1;5;1(u khi đó SG có phương trình: tz ty tx 3 5 5 3 8 3 8 tttS 3 5 ;5 3 8 ; 3 8 . Từ SG = 3 1 3 t , vì S có tung độ lớn hơn 2 nên S(3;1;-2) 0,25 Phương trình mặt phẳng trung trực của SA là (P): 4x + 4y +2z – 21 =0, Tâm I của mặt cầu là giao của (P) và SG. Tìm được I 2 3 ; 2 7 ; 2 5 0,25 Câu VI.a 2 Bán kính R = IS. Tìm được phương trình mặt cầu: 4 27 2 3 2 7 2 5 222 zyx 0,25 Tính xác suất Kí hiệu: 9 .,2,1A , mỗi số có 3 chữ số khác nhau và khác 0 tương ứng với một chỉnh hợp chập 3 của 9 phần tử trong A. Vậy không gian mẫu có số phần tử là: 504 3 9 A 0,25 Câu VII.a Kí hiệu A 1 = 9,6,3 , A 2 = 7,4,1 , A 3 = 8,5,2 Số lập được chia hết cho 3 nên tổng các chữ số của số đó chia hết cho 3. TH1: Cả 3 chữ số đều chia hết cho 3, mỗi số lập được ứng với 1 hoán vị của 3 phần tử thuộc A 1 nên có 3! Số TH2: Cả 3 chữ số đều chia 3 dư 1 tương tự ta có 3! Số 0,25 AA BD BB CC MM III TH3: Cả 3 chữ số đều chia 3 dư 2 tương tự ta có 3! Số TH4: Có 1 chữ số chia hết cho 3 (có 3 cách chọn), 1 chữ số chia 3 dư 1(có 3 cách chọn), 1chữ số chia 3 dư 2 (có 3 cách chon). Theo quy tắc nhân có 27 bộ số rồi mỗi bộ số lập được 3! Số. Từ 4 trường hợp trên ta có 30x 3! = 180 số 0,25 M : ‘ Số được chọn là số chia hết cho3 có 3 chữ số khác nhau và khác 0’ Xác suất của biến cố M là : P = 14 5 504 180 0,25 1,0 BC đi qua B(1;5) và vuông góc AH nên BC có pt - 2x + y – 3 = 0 Toạ độ C là nghiệm của hpt )5;4( 01 032 C yx yx 0,25 Gọi A ’ là điểm đối xứng B qua đường phân giác KdBAdyx ),(01 Đường thẳng KB đi qua B và vuông góc d nên KB có pt: x + y – 6 = 0 Toạ độ điểm K là nhgiệm của hpt ) 2 5 ; 2 7 ( 01 06 K yx yx Suy ra A ’ (6;0) , 0,25 Pt A ’ C :x – 2y – 6 = 0 Do AHCAA ' nên toạ độ A là nhgiêm của hpt )1;4( 022 062 A yx yx 0,25 1 Trung điểm I của AC có toạ độ là I(0;-3) đồng thời I là trung điêm BD nên D(-1;-11) 0,25 1,0 Giả sử Q n r là một vecto pháp tuyến của (Q). Khi đó 1; 1; 1 Q P n n uur uur Mặt phẳng (Q) cắt hai trục Oy và Oz tại 0; ;0 , 0;0;M a N b phân biệt sao cho OM = ON nên 0 0 a b a b a b 0,25 Nếu a = b thì 0; ; // 0; 1;1MN a a u uuuur r và Q n u uur r nên , 2;1;1 Q P n u n uur r uur . Khi đó mặt phẳng (Q): 2 2 0x y z và Q cắt Oy, Oz tại 0;2;0M và 0;0;2N (thỏa mãn) 0,25 Nếu a = - b thì 0; ; // 0;1;1MN a a u uuuur r và Q n u uur r nên , 0;1; 1 Q P n u n uur r uur . Khi đó mặt phẳng (Q): 0y z 0,25 Câu VI.b 2 Q cắt Oy, Oz tại 0;0;0M và 0;0;0N (loại). Vậy :2 2 0Q x y z . 0,25 Giải phương trình: 3 3 log x log x 2x 10 1 10 1 3 . 1,0 Câu VII.b Điều kiện : x > 0 - Ta có phương trinhg tương đương với: 3 3 3 log x log x log x 2 10 1 10 1 .3 3 0,5 - 3 3 log x log x 10 1 10 1 2 3 3 3 Đặt 3 log x 10 1 t 3 (t > 0). Phương trình trỏ thành: 2 1 2 t 3t 2t 3 0 t 3 1 10 t 3 1 10 t 3 ( loại) 0,5 Với t = 1 10 3 ta giải được x = 3. Vậy phương trình đã cho có nghiệm duy nhất x =3. - Chú ý : HS làm cách khác, đúng giáo viên chấm vẫn cho điểm bình thường. Cảm ơn cô Thúy (thuy79@gmail.com ) gửi tới www.laisac.page.tl