Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
330,05 KB
Nội dung
Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 1 PHƯƠNG PHÁP KHẢO SÁT HÀM SỐ CÓ CHỨA DẤU GIÁ TRỊTUYỆTĐỐI Dạng 1 Dựa vào đồthịhàm số ( ) : ( )=C y f x suy ra đồthịhàm số 1 1 ( ) : ( )=C y f x Ta có: 1 1 0 ( ) : 0 ≥ = = − ≤ y y C y y y y Nếu Nếu Dođóđồ thò 1 1 ( ) : ( )=C y f x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm phía trên Ox + Phần 2: là phần đồ thò ( ) : ( )=C y f x nằm phía dưới Ox lấy đối xứng qua Ox Dạng 2 Dựa vào đồthịhàm số ( ) : ( )=C y f x suy ra đồthịhàm số 2 2 ( ) : ( )=C y f x Nhận xét : 2 2 ( ) : ( )=C y f x là hàm số chẵn Nên 2 2 ( ) : ( )=C y f x nhận Oy làm trục đối xứng. Ta có: 2 2 ( ) 0 (1) ( ) : ( ) ( ) 0 = ≥ = = − ≤ f x y C y f x f x Nếu x Nếu x Dođóđồ thò 2 2 ( ) : ( )=C y f x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm phía bên phải Oy ( Do (1) ta có) + Phần 2: là phần đồ thò 1 lấy đối xứng qua Oy vì hàm số chẵn Dạng 3 Dựa vào đồthịhàm số ( ) : ( )=C y f x suy ra đồ thịhàm số 3 3 ( ) : ( )=C y f x Nhận xét : Nếu 0 0 3 0 0 3 ( ; ) ( ) ( ; ) ( )∈ ⇒ − ∈M x y C M x y C Nên 3 3 ( ) : ( )=C y f x nhận Ox làm trục đối xứng. Ta có: 3 3 3 ( ) : ( ) 0= = ⇒ = ≥C y f x y y y y Nếu Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 2 Dođóđồ thò 3 3 ( ) : ( )=C y f x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm phía trên Ox + Phần 2: là phần đồ thò 1 lấy đối xứng qua Ox . Dạng 4 Dựa vào đồthịhàm số ( ) : ( ) ( ). ( )= =C y f x u x v x suy ra đồthịhàm số 4 4 ( ) : ( ) . ( )=C y u x v x Ta có: 4 4 ( ). ( ) ( ) ( ) 0 ( ) : ( ) . ( ) ( ). ( ) ( ) ( ) 0 = = ≥ = = − = − = − ≤ u x v x f x y u x C y u x v x u x v x f x y u x Nếu Nếu Dođóđồ thò 4 4 ( ) : ( ) . ( )=C y u x v x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm trên miền ( ) 0≥u x + Phần 2: là phần đồ thò ( ) : ( )=C y f x nằm trên miền ( ) 0≤u x lấy đối xứng qua Ox Ta hay gặp dạng đơn giản sau: Dựa vào đồthịhàm số ( ) : ( ) ( ). ( )= = −C y f x x a v x suy ra đồthịhàm số 4 4 ( ) : . ( ),= − ∈ »C y x a v x a Ta có: 4 4 ( ). ( ) ( ) ( ) : . ( ) ( ). ( ) ( ) − = = ≥ = − = − − = − = − ≤ x a v x f x y x a C y x a v x x a v x f x y x a Nếu Nếu Dođóđồ thò 4 4 ( ) : . ( ),= − ∈ »C y x a v x a có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm bên phải đường thẳng x = a + Phần 2: là phần đồ thò ( ) : ( )=C y f x nằm bên trái đường thẳng x = a lấy đối xứng qua Ox. Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 3 TỔNG QUÁT Từ 4 dạng đồ thò có chứa dấu giá trò tuyệtđối cơ bản trên ta có thể suy ra nhiều dạng đồ thò có chứa dấu giá trò tuyệtđối khác chẳng hạn: Dạng 5 Dựa vào đồthịhàm số ( ) : ( )=C y f x suy ra đồthịhàm số 5 5 ( ) : ( )=C y f x Để vẽ 5 5 ( ) : ( )=C y f x ta làm 2 bước như sau: + Bước 1: vẽ 51 ( ) ( )= =y f x g x dựa vào dạng 2 + Bước 2: vẽ 5 ( ) ( )= =y f x g x dựa vào dạng 1 Dạng 6 Dựa vào đồthịhàm số ( ) : ( )=C y f x suy ra đồthịhàm số 6 6 ( ) : ( )=C y f x Để vẽ 6 6 ( ) : ( )=C y f x ta làm 2 bước như sau: + Bước 1: vẽ 61 ( ) ( )= =y f x g x dựa vào dạng 2 + Bước 2: vẽ 6 ( )=y g x dựa vào dạng 3 Dạng 7 Dựa vào đồthịhàm số ( ) : ( )=C y f x suy ra đồ thịhàm số 7 7 ( ) : ( )=C y f x Để vẽ 7 7 ( ) : ( )=C y f x ta làm 3 bước như sau: + Bước 1: vẽ 71 ( ) ( )= =y f x g x dựa vào dạng 2 + Bước 2: vẽ 72 ( ) ( ) ( )= = =y f x g x h x dựa vào dạng 1 + Bước 3: vẽ 7 7 ( ) : ( )=C y h x dựa vào dạng 3 Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 4 MỘT SỐ VÍ DỤ MINH HỌA Ví dụ 1. Cho hàm số 3 2 2 3 1y x x= − + có đồ thò (C). 1) Khảo sát và vẽđồ thò (C) của hàm số. 2) Viết phương trình tiếp tuyến của đồ thò (C) tại giao điểm của (C) với đường thẳng x = − 1 . 3) Tìm tham số m để phương trình 3 2 2 3 2x x m− + = có bốn nghiệm phân biệt. Giải 1) Khảo sát và vẽđồ thò (C) của hàm số. TXĐ: D = R 2 ' 6 6y x x= − ; ' 0 0y x= ⇔ = hoặc 1x = HSĐB trên khoảng ( −∞ ;0) ; ( 1; +∞ ). HSNB trên khoảng ( 0;1 ) Hàm số đạt cực đại tại 0; 1x y= = CĐ ; Hàm số đạt cực tiểu tại 1; 0x y= = CT lim x y →±∞ = ±∞ BBT x −∞ 0 1 +∞ y ’ + 0 – 0 + 1 +∞ y CĐ CT −∞ 0 '' 12 6y x= − ; '' 0y x= ⇔ = 1/2 x −∞ 1/2 +∞ y ’ – 0 + ĐTHS Lồi ĐU Lõm I(1/2;1/2) 2) Viết PTTT của đồ thò (C) tại giao điểm của (C) với đường thẳng x = − 1 x = − 1 => y = f( − 1) = − 4 => giao điểm M( − 1; − 4) pttt có dạng d: 000 )).((' yxxxfy +−= . 0 '( ) '( 1) 12f x f= − = => pttt d: 12( 1) 4 12 8y x x= + − = + . -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 x y P Q O ĐĐB: P( − 1; − 4) Q(2;5) 3 2 2 3 1y x x= − + NX: Đồ thò nhận điểm uốn I làm tâm đối xứng Hình 1 Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 5 3) Tìm tham số m để phương trình 3 2 2 3 2x x m− + = có bốn nghiệm phân biệt. Ta có: 3 3 2 2 2 3 2 2 3 1 1x x m x x m− + = ⇔ − + = − Đây là PT HĐGĐ của đồ thò 1 ( )C : 3 2 1 2 3 1y x x= − + và đường thẳng d: y = m − 1 T a có 1 ( )C : 3 2 1 3 2 2 3 1 0 2 3 1 0 x x x y x x x − + ≥ = − − + < ne nếu => 1 ( )C có 2 phần đồ thò: Phần I : Đồ thò (C) nằm bên phải trục Oy (cả điểm nằm trên Oy) Phần II : Lấy đối xứng đồ thò Phần I qua Oy vì hàm số 1 y là hàm số chẵn Vẽ 1 ( )C ( Hình 2) -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 x y Q O 3 2 1 2 3 1y x x= − + Hình 2 Dựa vào 1 ( )C ta có: 0 < m − 1 < 1 <=> 1 < m < 2 Ví dụ 2. Cho hàm số 4 2 1 4 3 2 y x x= − + có đồ thò là (C) a) Khảo sát và vẽđồ thò (C) của hàm số. Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 6 b) Đònh m để phương trình : 4 2 1 4 3 lg 2 x x m− + = có 4 nghiệm phân biệt. c) Đònh m để phương trình : 4 2 1 4 3 lg 2 − + =x x m có 8 nghiệm phân biệt. Giải a) Khảo sát và vẽđồ thò hàm số. TXĐ: D = R.Hàm số chẵn 3 ' 2 8y x x= − ; y ’= 0 <=> x = 0 hoặc x = ± 2 Giới hạn : lim x y →±∞ = +∞ BBT : x −∞ –2 0 2 +∞ y ’ – 0 + 0 – 0 + +∞ 3 +∞ y CT CĐ CT –5 –5 HSĐB trên khoảng (–2;0) và (2; +∞ ). HSNB trên khoảng ( −∞ ;–2) và (0;2) 2 '' 6 8y x= − ; '' 0 2 3 / 3y x= ⇔ = ± BXD y ’’ x −∞ – 2 3 / 3 2 3 / 3 +∞ y ’’ + 0 – 0 + ĐT (C) Lõm ĐU Lồi ĐU Lõm (–2 3 / 3 ;–13/9) (2 3 / 3 ;–13/9) Đồ thò: o NX: đồ thò nhận Oy làm trục đối xứng o ĐĐB: A(–3; 15/2), B(3;15/2) Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 x y O CĐ CT CT ←→ 4 2 1 4 3 2 y x x= − + ←→ ←→ B A b) Đònh m để phương trình : 4 2 1 4 3 lg 2 x x m− + = có 4 nghiệm phân biệt. YCBT <=> 5 lg 3m− < < <=> 5 3 5 3 lg10 lg lg10 10 10m m − − < < ⇔ < < c) Đònh m để phương trình : 4 2 1 4 3 lg 2 − + =x x m có 8 nghiệm phân biệt. Đây là PT HĐGĐ của đồ thò 1 ( )C : 4 2 1 1 4 3 2 = − +y x x và đường thẳng d: y = m − 1 T a có : 1 1 0 ( ) : 0 ≥ = = − ≤ y y C y y y y Nếu Nếu Dođóđồ thò 1 1 ( ) : ( )=C y f x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm phía trên Ox + Phần 2: là phần đồ thò ( ) : ( )=C y f x nằm phía dưới Ox lấy đối xứng qua Ox -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 x y 4 2 1 1 4 3 2 = − +y x x Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 8 YCBT <=> 0 lg 3< <m <=> 3 lg1 lg lg10 1 1000< < ⇔ < <m m Ví dụ 3. Vẽđồ th ị hàm s ố 2 1 1 ( ) : 1 = − x C y x Ta vẽđồ thò hàm số 2 ( ) : 1 = − x C y x -5 -4 -3 -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 6 7 8 x y 2 ( ): 1 = − x C y x Dựa vào (C) ta có: 2 1 1 ( ) : 1 = − x C y x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm bên phải đường thẳng x = 1 + Phần 2: là phần đồ thò ( ) : ( )=C y f x nằm bên trái đường thẳng x = 1 lấy đối xứng qua Ox. -5 -4 -3 -2 -1 1 2 3 4 5 -3 -2 -1 1 2 3 4 5 6 7 8 x y 2 1 1 ( ): 1 = − x C y x Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 9 Ví dụ 4. Vẽđồ th ị hàm s ố 1 1 1 ( ) : 1 − = + x C y x Ta vẽđồ thò hàm số 1 ( ) : 1 − = + x C y x -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 x y 1 ( ): 1 − = + x C y x Dựa vào (C) ta có: 1 1 1 ( ) : 1 − = + x C y x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm phía trên Ox + Phần 2: là phần đồ thò 1 lấy đối xứng qua Ox . -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 x y 1 1 1 ( ): 1 − = + x C y x Trần Phú Vương Một số phương pháp vẽđồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 10 Ví dụ 5. Vẽđồ th ị hàm s ố 2 5 5 ( ) : 1 = − x C y x Dựa vào đồ thò hàm số 2 ( ) : 1 = − x C y x ở ví dụ 3 ta có: 2 5 5 ( ) : 1 = − x C y x có 2 phần đồ thò : + Phần 1: là phần đồ thò ( ) : ( )=C y f x nằm phía bên phải Oy + Phần 2: là phần đồ thò 1 lấy đối xứng qua Oy vì hàm số chẵn -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 x y 2 5 5 ( ) : 1 = − x C y x Ví dụ 6. Vẽđồ th ị hàm s ố 2 6 6 ( ) : 1 = − x C y x Dựa vào đồ thò hàm số 2 5 5 ( ) : 1 = − x C y x ở ví dụ 5 ta có: Trần Phú Vương [...]...Một số phương pháp vẽ đồ thò của hàm số có chứa dấu giá trò tuyệtđối x2 (C6 ) : y6 = x −1 có 2 phần đồ thò : + Phần 1: là phần đồ thò (C5 ) nằm phía trên Ox + Phần 2: là phần đồ thò (C5 ) nằm phía dưới Ox lấy đối xứng qua Ox 8 7 6 5 4 3 2 1 x2 (C 6 ) : y 6 = x −1 -5 -4 Ví dụ 7 Vẽ -3 -2 -1 th hàm s -1 -2 -3 -4 -5 y Trần Phú Vương x 1 2 3 4 5 x2 (C7 ) : y7 = x −1 Dựa vào đồ thò hàm số x2 (C6 ) : y6... ) : y7 = x −1 Dựa vào đồ thò hàm số x2 (C6 ) : y6 = x −1 x2 (C7 ) : y7 = x −1 có 2 phần đồ thò : ở ví dụ 6 ta có: + Phần 1: là phần đồ thò (C6 ) nằm phía trên Ox + Phần 2: là phần đồ thò 1 lấy đối xứng qua Ox Trần Phú Vương Trang 11 THPT Tân Hiệp Một số phương pháp vẽ đồ thò của hàm số có chứa dấu giá trò tuyệtđối 7 6 5 4 3 2 1 x2 (C7 ) : y7 = x −1 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 -7 Trần Phú Vương . pháp vẽ đồ thò của hàm số có chứa dấu giá trò tuyệt đối. Trần Phú Vương THPT Tân Hiệp Trang 1 PHƯƠNG PHÁP KHẢO SÁT HÀM SỐ CÓ CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI. chứa dấu giá trò tuyệt đối khác chẳng hạn: Dạng 5 Dựa vào đồ thị hàm số ( ) : ( )=C y f x suy ra đồ thị hàm số 5 5 ( ) : ( )=C y f x Để vẽ 5 5 ( ) : ( )=C