Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 25 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
25
Dung lượng
402,41 KB
Nội dung
CHƯƠNG 2 KÉO NÉNĐÚNGTÂM I. KHÁI NIỆM CHUNG - ỨNG SUẤT TRÊN MẶT CẮT NGANG 1. Giả thuyết mặt cắt ngang phẳng 2. Giả thuyết về các thớ dọc 3. Ứng suất trên mặt cắt ngang II. BIẾN DẠNG VÀ HỆ SỐ POÁT - XÔNG III. ỨNG SUẤT TRÊN MẶT CẮT NGHIÊNG 1. Định luật bất biến của ứng suất pháp 2. Định luật đối ứng của ứng suất IV. ĐẶC TRƯNG CƠ HỌC CỦA VẬT LIỆU A. VẬT LIỆU DẼO 1. Thí nghiệm kéo 2. Thí nghiệm nén B. VẬT KÉO GIÒN V. MỘT SỐ HIỆN TƯỢNG PHÁT SINH KHI VẬT LIỆU CHỊU LỰC 0. Hiện tượng biến cứng 1. Hiện tượng sau tác dụng VI. KHÁI NIỆM VỀ SỰ TẬP TRUNG ỨNG SUẤT VII. THẾ NĂNG BIẾN DẠNG ĐÀN HỒI VIII. ỨNG SUẤT CHO PHÉP - HỆ SỐ AN TOÀN 0. Kiểm tra bền 1. Chọn kích thước của mặt cắt 2. Xác định tải trọng cho phép IX. THANH CÓ ĐỘ BỀN ĐỀU 0. Thanh có trọng lượng 1. Thanh có độ bền đều X. BÀI TOÁN SIÊU TĨNH I. KHÁI NIỆM CHUNG - ỨNG SUẤT TRÊN MẶT CẮT NGANG Top Trong chương này chúng ta sẽ nghiên cứu trường hợp chịu lực đơn giản nhất của thanh thẳng - thanh chịu kéo hoặc nénđúng tâm. Ðó là một trong những bài toán cơ bản của sức bền vật liệu. Ta gọi một thanh chịu kéo hay nén đúngtâm là thanh chịu lực sao cho trên mọi mặt cắt ngang chỉ có thành phần lực dọc Nz. Ðể tính ứng suất trên mặt cắt ngang ta làm thí nghiệm với thanh mặt cắt ngang chữ nhật chịu kéođúng tâm. Trước khi cho thanh chịu lực, vạch lên mặt thanh những đường thẳng song song với trục tượng trưng cho các thớ dọc và những đường vuông góc với trục thanh tượng trưng cho các mặt cắt ngang, chúng tạo thành mạng lưới ô vuông. Sau khi thanh bị biến dạng ta thấy các đường thẳng song song và vuông góc với trục thanh vẫn còn song song và vuông góc với trục nhưng mạng lưới ô vuông đã trở thành mạng lưới ô chữ nhật (hình 2-1). Dựa vào nhận xét trên, ta đưa ra 2 giả thuyết cơ bản sau đây để làm cơ sở cho việc tính ứng suất và biến dạng của thanh chịu kéo, nénđúng tâm: 1. Giả thuyết mặt cắt ngang phẳng Top P P Hçnh 2-1 Trong quá trình biến dạng mặt cắt ngang của thanh luôn luôn giữ phẳng và vuông góc với trục của thanh. Ý nghĩa của giả thuyết này là trên mặt cắt ngang chỉ có thành phần ứng suất pháp (z mà không thể có thành phần ứng suất tiếp (. Thật vậy nếu có thành phần ứng suất tiếp thì mặt cắt ngang của thanh sau biến dạng sẽ không còn phẳng và vuông góc với trục thanh nữa, như vậy lưới ô vuông sẽ không trở thành lưới ô chữ nhật. (Hình 2-1) 2. Giả thuyết về các thớ dọc Top Trong quá trình biến dạng, các thớ dọc không ép lên nhau cũng không đẩy nhau ra. Ý nghĩa của giả thuyết này là thành phần ứng suất pháp trên các mặt cắt dọc phải bằng không s x = s y = 0 Ngoài hai giả thuyết trên, ta vẫn coi vật liệu làm việc trong giới hạn đàn hồi: vật liệu tuân theo định luật Húc: quan hệ giữa ứng suất và biến dạng là bậc nhất: s z = E.e z Trong đó: E: mođun đàn hồi, là hằng số đối với mỗi loại vật liệu. (z: biến dạng dài tương đối theo phương z. 3. Ứng suất trên mặt cắt ngang Top 1 2 2' 1 2 2' dz Ddz Hçnh 2-2 Xét một đoạn thanh có chiều dài dz, sau khi biến dạng, đoạn thanh này dãn ra một lượng là (dz. Dựa vào giả thuyết mặt cắt ngang phẳng ta nhận thấy các thớ dọc của chúng đều giãn dài ra như nhau (Hình 2-2) Do đó:Ġ Như vậy ứng suất pháp (z tại mọi điểm trên mặt cắt ngang phải có giá trị bằng nhau. Tổng hình chiếu của nội lực trên trục z phải bằng lực dọc Nz vì (z = const nên ta cóĠ (II-1) Trong đó: Nz: lực dọc F: diện tích mặt cắt ngang Dấu của ứng suất pháp cùng dấu với lực dọc Nz . Lực dọc Nz được coi là dương khi làm thanh chịu kéo: Nz>0 ; (z >0 Lực dọc Nz được coi là âm khi làm thanh chịu nén: Nz<0 ; (z <0 Với phương pháp tính toán chính xác (không thông qua các giả thuyết) lý thuyết đàn hồi cũng đã chứng minh được rằng một thanh chịu kéo nénđúngtâm thì dù hình thức đặt lực ở các đầu thanh là như thế nào thì sự phân bố ứng suất trên những mặt cắt ở xa mặt cắt đặt lực cũng là phân bố đều. Mỗi loại vật liệu có một trị số môđun đàn hồi E. Ta phải tiến hành thí nghiệm để xác định trị số đó. Thứ nguyên của E làĠ. Ta nêu lên vài trị số cụ thể của E như sau: Thép chứa từ 0,1ĵ0,20% cacbon Thép lò xo Thép Nicken Gang xám Ðồng Ðồng thau Nhôm và Ðura Gỗ dọc thớ Cao su E = 20.10 10 N/m 2 = 2.10 4 KN/cm 2 E = 22.10 10 N/m 2 = 2,2.10 4 KN/cm 2 E = 19.10 10 N/m 2 = 1,9.10 4 KN/cm 2 E = 11,5.10 10 N/m 2 = 1,15.10 4 KN/cm 2 E = 12.10 10 N/m 2 = 1,2.10 4 KN/cm 2 E = (10 12).10 10 N/m 2 = (1 1,2).10 4 KN/cm 2 E = (7 8).10 10 N/m 2 = (0,7 0,8).10 4 KN/cm 2 E = (0,8 1,2).10 10 N/m 2 = (0,8 1,2).10 4 KN/cm 2 E = 8.10 6 N/m 2 = 0,8 KN/cm 2 II. BIẾN DẠNG VÀ HỆ SỐ POÁT - XÔNG Top Khi thanh chịu kéo hay nén, chiều dài l của thanh dãn dài ra hay co ngắn lại một lượng là (l. Ðộ dãn hay độ co đó được gọi là biến dạng dài hay biến dạng dọc. Xét một đoạn có chiều dài vi cấp dz, sau biến dạng bị dãn dài ra là (dz Biến dạng dài tương đối:Ġ Mà (z = (z.(zĠ VậyĠ (II-2) Trường hợp đặc biệt khi lượngĠkhông đổi trên suốt chiều dài của thanh thì Thông thường ta phải chia thanh ra từng đoạn li sao cho tỉ sốĠ không đổi: x y b Db Da a Hçnh 2-3 Biến dạng dọc của thanh chịu kéo hay nén tỉ lệ thuận với lực dọc và chiều dài của thanh, tỉ lệ nghịch với mođun đàn hồi của vật liệu và diện tích mặt cắt ngang của thanh. Tỉ số EF được gọi là độ cứng của thanh khi kéo hoặc nén. Khi thanh chịu kéo - nén, ngoài biến dạng dọc, theo phương ngang của thanh cũng bị biến dạng. (Hình 2-3) Gọi (x , (y: biến dạng tương đối theo phương x , y ta có ; Giữa các biến dạng tương đối theo các phương có một tương quan nhất định . Poát - xông tìm thấy mối tương quan đó như sau: e x = e y = -me z (II-3) Trong đó ( là hằng số tỉ lệ được gọi là hệ số Poát - xông. ( phụ thuộc vào vật liệu và có giá trị như sau ( = İ0,5 Dấu trừ trong công thức (II-3) chứng tỏ biến dạng theo phương ngang và theo phương dọc là ngược nhau. Ta có thể nêu lên vài trị số của ( như sau: Vật liệu m Vật liệu m Thép Gang Nhôm Ðồng 0,25¸0,33 0,23¸0,27 0,32¸0,36 0,31¸0,34 Ðồng đen Ðá hộc Bê tông Cao su 0,32¸0,35 0,16¸0,34 0,08¸0,18 0,47 III. ỨNG SUẤT TRÊN MẶT CẮT NGHIÊNG Top Trên đây ta đã tìm được quy luật phân bố và công thức tính ứng suất pháp trên mặt cắt ngang. Bây giờ chúng ta sẽ tìm cách xác định các thành phần ứng suất trên mặt cắt nghiêng có pháp tuyến hợp với trục thanh một góc ( bất kỳ. Qua đó ta sẽ biết được quy luật thay đổi của các ứng suất trên các mặt cắt nghiêng khác nhau. Nhờ vậy ta cũng biết được trong tất cả các mặt cắt đi qua một điểm, mặt cắt nào có ứng suất lớn nhất để sử dụng trong quá trình tính toán bền sau này. Ðể tính ứng suất trên mặt cắt nghiêng ta tách ra một phân tố ABC có mặt cắt AB nghiêng với trục thanh một góc ( (Hình 2-4) a B A u t a s a v a s z a C A dF dF.sina B Hçnh 2-4 Gọi dF là diện tích mặt nghiêng AB; viết phương trình hình chiếu của tất cả các lực lên phương u và v ta có: u = 0 => s a .dF - s z .dF.cosa.cosa = 0 v = 0 => t a .dF - s z .dF.cosa.sina = 0 Rút ra:Ġ (II-4) Nhận xét: · Max (( = (z khi ( = 0: mặt cắt ngang có ứng suất pháp lớn nhất. · Min (( = 0 khiĠ: mặt cắt dọc có ứng suất pháp bằng không. · MaŸ khi ( = 450: mặt cắt nghiêng với trục 1 góc 450 có ứng suất tiếp lớn nhất · Min (( = 0 khi ( = 0 vàĠ: mặt cắt ngang và mặt cắt dọc không có thành phần ứng suất tiếp. Ðể tìm sự liên hệ giữa các ứng suất trên hai mặt cắt vuông góc nhau, ta sẽ tính ứng suất trên mặt cắt vuông góc với mặt cắt nghiêng vừa xét Thay ( bằng Ĩ) ta có : (II-5) Kết hợp công thức (II-4) và (II-5) lại, ta nhận thấy: (II-6) Ta có các định luật sau đây: 1. Định luật bất biến của ứng suất pháp Top Tổng của ứng suất pháp trên hai mặt cắt vuông góc nhau là một hằng số 2. Định luật đối ứng suất tiếp Top t<0 t>0 t>0 t<0 Hçnh 2-5 Nếu trên một mặt cắt nào đó có ứng suất tiếp thì trên mặt cắt vuông góc với phương của ứng suất tiếp đó cũng phải có ứng suất tiếp. Trị số các ứng suất tiếp trên hai mặt cắt đó là bằng nhau nhưng có dấu ngược nhau, nghĩa là chúng có chiều cùng hướng vào hoặc cùng đi ra khỏi giao tuyến của hai mặt cắt trên. (Hình 2-5) IV. ĐẶC TRƯNG CƠ HỌC CỦA VẬT LIỆU Top Muốn hiểu rõ đặc trưng cơ học của vật liệu ta thường làm thí nghiệm kéonén để quan sát tính chất và quá trình biến dạng của các loại vật liệu khác nhau kể từ lúc mới bắt đầu chịu lực cho đến khi bị phá hủy. Căn cứ vào biến dạng của mẫu thí nghiệm khi bị phá hủy ta có thể chia vật liệu ra làm hai loại: q Vật liệu dẽo: là những vật liệu bị phá hoại sau khi đã có biến dạng lớn . Ví dụ: thép, đồng, nhôm . q Vật liệu giòn: là những vật liệu bị phá hoại ngay khi biến dạng còn rất bé. Ví dụ: gang, đá , bê-tông . A. VẬT LIỆU DẼO 1. Thí nghiệm kéo: Top Mẫu thí nghiệm: thường dùng là thanh thép hình trụ, đường kính ban đầu là d0 chiều dài ban đầu là l0 Theo TCVN 197-66 P Dl 0 P tl P ch P b C' C B A Hçnh 2-6 Ðể thí nghiệm được chính xác, hai đầu mẫu thí nghiệm, chổ cặp vào máy được gia công có đường kính lớn hơn. Sau khi cặp mẫu vào máy, ta tăng lực dần từ 0 cho đến khi mẫu bị đứt. Ðồ thị biểu diễn quan hệ giữa lực kéo P và độ biến dạng dài tuyệt đối (l của mẫu thí nghiệm được một bộ phận tự động ghi lại như hình vẽ (2-6). Qua đồ thị này ta có thể chia quá trình chịu lực của vật qua làm ba giai đoạn: a./ Giai đoạn đàn hồi: (đoạn OA) Vật liệu làm việc tuân theo định luật Húc: quan hệ giữa lực tác dụng và biến dạng là bậc nhất . Ứng với giai đoạn này ta có giới hạn tỉ lệ (tl là tỉ số giữa lực kéo lớn nhất và diện tích mặt cắt ngang ban đầu (II-7) [Ðường chét nốp hay Luđe: đường phát sinh trong giai đoạn chảy, nghiêng với trục thanh một góc gần bằng 450 chứng tỏ sự trượt của các tinh thể trong giai đoạn chảy của vật liệu ] b./ Giai đoạn chảy (đoạn AB) Tương quan giữa P và (l là một đường nằm ngang. Ðặc điểm của giai đoạn này là lực kéo không tăng trong khi đó biến dạng vẫn cứ tăng. Trị số lực tương ứng với giai đoạn này là Pch và ta có giới hạn chảy là (ch: (II-8) c./ Giai đoạn củng cố: (đoạn BC) Sau biến dạng chảy, vật liệu bị biến cứng nên ở giai đoạn này lực có tăng biến dạng mới tăng. Quan hệ giữa lực kéo và biến dạng là một đường cong. Trị số lực cao nhất trong giai đoạn này được ký hiệu là Pb và ta có giới hạn bền (b (II-9) Ba giới hạn (tl , (ch , (b là ba đặc trưng cơ học của vật liệu. Ngoài ra, để đánh giá độ dẽo của vật liệu người ta thường dùng hai đại lượng sau đây : Biến dạng dài tỉ đối tính theo phần trăm Ðộ thắt tỉ đối tính theo phần trăm (II-10) s z e z 0 s tl s ch s b C' C B A a Hçnh 2-7 . thẳng - thanh chịu kéo hoặc nén đúng tâm. Ðó là một trong những bài toán cơ bản của sức bền vật liệu. Ta gọi một thanh chịu kéo hay nén đúng tâm là thanh chịu. TRƯNG CƠ HỌC CỦA VẬT LIỆU A. VẬT LIỆU DẼO 1. Thí nghiệm kéo 2. Thí nghiệm nén B. VẬT KÉO GIÒN V. MỘT SỐ HIỆN TƯỢNG PHÁT SINH KHI VẬT LIỆU CHỊU LỰC 0. Hiện