Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
1,03 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀTHITUYỂN SINH CAOĐẲNG NĂM 2010 Môn: TOÁN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phát đề. I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 32 31yx x=+ −. 2. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng − 1. Câu II (2,0 điểm) 1. Giải phương trình 53 4 cos cos 2(8sin 1)cos 5. 22 xx xx+−= 2. Giải hệ phương trình 22 22 32 (, ). 22 xy xy xy xxyy ⎧ +=− − ⎪ ⎨ ∈ −−= ⎪ ⎩ \ Câu III (1,0 điểm) Tính tích phân 1 0 21 . 1 x dx x − = + ∫ 1. I Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 ,SA SB= o . Tính theo a thể tích của khối chóp S.ABCD. Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện Tìm giá trị nhỏ nhất của biểu thức 3xy+≤ 11 A x xy =+ ⋅ II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm và mặt phẳng (1; 2; 3),A − (1;0;1)B − (): 4 0.Px y z+++= 1. Tìm tọa độ hình chiếu vuông góc của A trên (P). 2. Viết phương trình mặt cầu (S) có bán kính bằng 6 , AB có tâm thuộc đường thẳng AB và (S) tiếp xúc với (P). Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện 2 iz iz i−++=−+(2 3 ) (4 ) (1 3 ) . Tìm phần thực và phần ảo của z. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 : 211 xy z− (): 2 2 2 0Pxyz−+ −= 2 (1 ) 6 3 0zizi−+ ++ = d == − và mặt phẳng . 1. Viết phương trình mặt phẳng chứa d và vuông góc với (P). 2. Tìm tọa độ điểm M thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng (P). Câu VII.b (1,0 điểm) Giải phương trình trên tập hợp các số phức. ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀTHITUYỂN SINH CAOĐẲNG NĂM 2010 Môn: TOÁN; Khối: D Thời gian làm bài: 180 phút, không kể thời gian phát đề. I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 32 31yx x=+ −. 2. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng − 1. Câu II (2,0 điểm) 1. Giải phương trình 53 4 cos cos 2(8sin 1)cos 5. 22 xx xx+−= 2. Giải hệ phương trình 22 22 32 (, ). 22 xy xy xy xxyy ⎧ +=− − ⎪ ⎨ ∈ −−= ⎪ ⎩ \ Câu III (1,0 điểm) Tính tích phân 1 0 21 . 1 x dx x − = + ∫ 1. I Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 ,SA SB= o . Tính theo a thể tích của khối chóp S.ABCD. Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện Tìm giá trị nhỏ nhất của biểu thức 3xy+≤ 11 A x xy =+ ⋅ II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm và mặt phẳng (1; 2; 3),A − (1;0;1)B − (): 4 0.Px y z+++= 1. Tìm tọa độ hình chiếu vuông góc của A trên (P). 2. Viết phương trình mặt cầu (S) có bán kính bằng 6 , AB có tâm thuộc đường thẳng AB và (S) tiếp xúc với (P). Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện 2 iz iz i−++=−+(2 3 ) (4 ) (1 3 ) . Tìm phần thực và phần ảo của z. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 : 211 xy z− (): 2 2 2 0Pxyz−+ −= 2 (1 ) 6 3 0zizi−+ ++ = d == − và mặt phẳng . 1. Viết phương trình mặt phẳng chứa d và vuông góc với (P). 2. Tìm tọa độ điểm M thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng (P). Câu VII.b (1,0 điểm) Giải phương trình trên tập hợp các số phức. ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀTHITUYỂN SINH CAOĐẲNG NĂM 2010 Môn: TOÁN; Khối: B Thời gian làm bài: 180 phút, không kể thời gian phát đề. I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 32 31yx x=+ −. 2. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng − 1. Câu II (2,0 điểm) 1. Giải phương trình 53 4 cos cos 2(8sin 1)cos 5. 22 xx xx+−= 2. Giải hệ phương trình 22 22 32 (, ). 22 xy xy xy xxyy ⎧ +=− − ⎪ ⎨ ∈ −−= ⎪ ⎩ \ Câu III (1,0 điểm) Tính tích phân 1 0 21 . 1 x dx x − = + ∫ 1. I Câu IV (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 ,SA SB= o . Tính theo a thể tích của khối chóp S.ABCD. Câu V (1,0 điểm) Cho hai số thực dương thay đổi x, y thỏa mãn điều kiện Tìm giá trị nhỏ nhất của biểu thức 3xy+≤ 11 A x xy =+ ⋅ II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm và mặt phẳng (1; 2; 3),A − (1;0;1)B − (): 4 0.Px y z+++= 1. Tìm tọa độ hình chiếu vuông góc của A trên (P). 2. Viết phương trình mặt cầu (S) có bán kính bằng 6 , AB có tâm thuộc đường thẳng AB và (S) tiếp xúc với (P). Câu VII.a (1,0 điểm) Cho số phức z thỏa mãn điều kiện 2 iz iz i−++=−+(2 3 ) (4 ) (1 3 ) . Tìm phần thực và phần ảo của z. B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 : 211 xy z− (): 2 2 2 0Pxyz−+ −= 2 (1 ) 6 3 0zizi−+ ++ = d == − và mặt phẳng . 1. Viết phương trình mặt phẳng chứa d và vuông góc với (P). 2. Tìm tọa độ điểm M thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng (P). Câu VII.b (1,0 điểm) Giải phương trình trên tập hợp các số phức. ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: Trang 1/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀTHITUYỂN SINH ĐẠI HỌC NĂM 2010 Môn: TOÁN; Khối A (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) Khi m = 1, ta có hàm số y = x 3 − 2x 2 + 1. • Tập xác định: R. • Sự biến thiên: - Chiều biến thiên: 'y = 3x 2 − 4x; '( )yx = 0 ⇔ x = 0 hoặc x = 4 3 . 0,25 Hàm số đồng biến trên các khoảng (−∞; 0) và 4 ; 3 ⎛⎞ +∞ ⎜⎟ ⎝⎠ ; nghịch biến trên khoảng 4 0; 3 ⎛⎞ ⎜⎟ ⎝⎠ . - Cực trị: Hàm số đạt cực đại tại x = 0; y CĐ = 1, đạt cực tiểu tại x = 4 3 ; y CT = 5 27 − . - Giới hạn: lim x y →−∞ = − ∞ ; lim x y →+∞ = + ∞. 0,25 - Bảng biến thiên: 0,25 • Đồ thị: 0,25 2. (1,0 điểm) Phương trình hoành độ giao điểm: x 3 − 2x 2 + (1 − m)x + m = 0 ⇔ (x − 1)(x 2 − x − m) = 0 ⇔ x = 1 hoặc x 2 − x − m = 0 (*) 0,25 Đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt, khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt, khác 1. 0,25 Ký hiệu g(x) = x 2 − x − m; x 1 = 1; x 2 và x 3 là các nghiệm của (*). Yêu cầu bài toán thỏa mãn khi và chỉ khi: 22 23 0 (1) 0 3 g xx ⎧ ∆> ⎪ ≠ ⎨ ⎪ + < ⎩ 0,25 I (2,0 điểm) ⇔ 14 0 0 12 3 m m m +> ⎧ ⎪ −≠ ⎨ ⎪ +< ⎩ ⇔ 1 4 − < m < 1 và m ≠ 0. 0,25 y 1 +∞ −∞ 'y + 0 − 0 + x −∞ 0 4 3 +∞ 5 27 − 5 27 − O y x 4 3 1 2 Trang 2/4 Câu Đáp án Điểm 1. (1,0 điểm) Điều kiện: cosx ≠ 0 và 1 + tanx ≠ 0. Khi đó, phương trình đã cho tương đương: 2 sin 4 x π ⎛⎞ + ⎜⎟ ⎝⎠ (1 + sinx + cos2x) = (1 + tanx)cosx 0,25 ⇔ (sinx + cosx)(1 + sinx + cos2x) = sin cos cos cos xx x x + ⇔ sinx + cos2x = 0 0,25 ⇔ 2sin 2 x − sinx − 1 = 0 ⇔ sinx = 1 (loại) hoặc sinx = − 1 2 0,25 ⇔ x = − 6 π + k2π hoặc x = 7 6 π + k2π (k ∈ Z). 0,25 2. (1,0 điểm) Điều kiện: x ≥ 0. Ta có: 2 2( 1)xx− + = 22 (1)1xx+− + > 1, suy ra 1 − 2 2( 1)xx− + < 0. Do đó, bất phương trình đã cho tương đương với: 2 2( 1)xx− + ≤ 1 − x + x (1) 0,25 Mặt khác 2 2( 1) xx −+ = 22 2(1 ) 2( ) x x −+ ≥ 1 − x + x (2), do đó: 0,25 (1) ⇔ 2 2( 1) xx − + = 1 − x + x (3) Để ý rằng: + Dấu bằng ở (2) xảy ra chỉ khi: 1 − x = x đồng thời 1 − x + x ≥ 0. + 1 − x = x kéo theo 1 − x + x ≥ 0, do đó: (3) ⇔ 1 − x = x 0,25 II (2,0 điểm) ⇔ 2 10 (1 ) x x x −≥ ⎧ ⎪ ⎨ −= ⎪ ⎩ ⇔ 2 1 310 x xx ≤ ⎧ ⎪ ⎨ − += ⎪ ⎩ ⇔ x = 35 2 − , thỏa mãn điều kiện x ≥ 0. 0,25 I = 1 2 0 d 12 x x e x x e ⎛⎞ + ⎜⎟ ⎜⎟ + ⎝⎠ ∫ = 1 2 0 d x x ∫ + 1 0 d 12 x x e x e + ∫ . 0,25 Ta có: 1 2 0 d x x ∫ = 1 3 0 1 3 x = 1 3 0,25 và 1 0 d 12 x x e x e + ∫ = 1 2 1 0 d(1 2 ) 12 x x e e + + ∫ , suy ra: 0,25 III (1,0 điểm) I = 1 3 + 1 0 1 ln(1 2 ) 2 x e+ = 1 3 + 112 ln 23 e + = 1 3 + 112 ln 23 e + . 0,25 • Thể tích khối chóp S.CDNM. S CDNM = S ABCD − S AMN − S BCM = AB 2 − 1 2 AM.AN − 1 2 BC.BM = a 2 − 2 8 a − 2 4 a = 2 5 8 a . 0,25 V S.CDNM = 1 3 S CDNM .SH = 3 53 24 a . 0,25 IV (1,0 điểm) • Khoảng cách giữa hai đường thẳng DM và SC. ∆ADM = ∆DCN ⇒ n n ADM DCN = ⇒ DM ⊥ CN, kết hợp với DM ⊥ SH, suy ra DM ⊥ (SHC). Hạ HK ⊥ SC (K ∈ SC), suy ra HK là đoạn vuông góc chung của DM và SC, do đó: d(DM, SC) = HK. 0,25 A B C D S N H K M Trang 3/4 Câu Đáp án Điểm Ta có: HC = 2 CD CN = 2 5 a và HK = 22 . SH HC SH HC + = 23 19 a , do đó: d(DM, SC) = 23 19 a . 0,25 Điều kiện: x ≤ 3 4 ; y ≤ 5 2 . Phương trình thứ nhất của hệ tương đương với: (4x 2 + 1).2x = (5 − 2y + 1) 52y− (1) 0,25 Nhận xét: (1) có dạng f(2x) = f( 52y− ), với f(t) = (t 2 + 1)t. Ta có 'f (t) = 3t 2 + 1 > 0, suy ra f đồng biến trên R. Do đó: (1) ⇔ 2x = 52y− ⇔ 2 0 54 . 2 x x y ≥ ⎧ ⎪ ⎨ − = ⎪ ⎩ 0,25 Thế vào phương trình thứ hai của hệ, ta được: 4x 2 + 2 2 5 2 2 x ⎛⎞ − ⎜⎟ ⎝⎠ + 2 34x− −7 = 0 (3). Nhận thấy x = 0 và x = 3 4 không phải là nghiệm của (3). Xét hàm g(x) = 4x 2 + 2 2 5 2 2 x ⎛⎞ − ⎜⎟ ⎝⎠ + 2 34x− − 7, trên khoảng 3 0; 4 ⎛⎞ ⎜⎟ ⎝⎠ . 0,25 V (1,0 điểm) '( )g x = 8x − 8x 2 5 2 2 x ⎛⎞ − ⎜⎟ ⎝⎠ − 4 34 x− = 4x (4x 2 − 3) − 4 34 x− < 0, suy ra hàm g(x) nghịch biến. Mặt khác 1 2 g ⎛⎞ ⎜⎟ ⎝⎠ = 0, do đó (3) có nghiệm duy nhất x = 1 2 ; suy ra y = 2. Vậy, hệ đã cho có nghiệm: (x; y) = 1 ;2 2 ⎛⎞ ⎜⎟ ⎝⎠ . 0,25 1. (1,0 điểm) d 1 và d 2 cắt nhau tại O, cos(d 1 , d 2 ) = |3.31.1| 31.31 − + + = 1 2 và tam giác OAB vuông tại B, do đó n AOB = 60 D ⇒ n BAC = 60 D . 0,25 Ta có: S ABC = 1 2 AB.AC.sin 60 D = 3 4 (OA.sin 60 D ).(OA.tan 60 D ) = 33 8 OA 2 . Do đó: S ABC = 3 2 , suy ra OA 2 = 4 3 . 0,25 Tọa độ A(x; y) với x > 0, thỏa mãn hệ: 22 30 4 3 xy xy ⎧ + = ⎪ ⎨ + = ⎪ ⎩ ⇒ A 1 ;1 3 ⎛⎞ − ⎜⎟ ⎝⎠ . Đường thẳng AC đi qua A và vuông góc với d 2 , suy ra AC có phương trình: 3 x − 3y − 4 = 0. Tọa độ C(x; y) thỏa mãn hệ: 30 3340 xy xy ⎧ −= ⎪ ⎨ − −= ⎪ ⎩ ⇒ C 2 ;2 3 − ⎛⎞ − ⎜⎟ ⎝⎠ . 0,25 VI.a (2,0 điểm) Đường tròn (T) có đường kính AC, suy ra tâm của (T) là I 13 ; 2 23 − ⎛⎞ − ⎜⎟ ⎝⎠ và bán kính IA = 1. Phương trình (T): 2 2 13 1 2 23 xy ⎛⎞ ⎛⎞ +++= ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ . 0,25 d 2 y x C B O A d 1 I Trang 4/4 Câu Đáp án Điểm 2. (1,0 điểm) Đường thẳng ∆ có vectơ chỉ phương v G = (2; 1; −1) và mặt phẳng (P) có vectơ pháp tuyến n G = (1; −2; 1). 0,25 Gọi H là hình chiếu của M trên (P), ta có cos n HMC = () cos , vn GG . 0,25 d(M, (P)) = MH = MC.cos n HMC = MC. () cos , vn GG 0,25 = 6 . |2 2 1| 6. 6 − − = 1 6 . 0,25 Ta có: z = (1 + 2 2 i) (1 − 2 i) 0,25 = 5 + 2 i, suy ra: 0,25 z = 5 − 2 i. 0,25 VII.a (1,0 điểm) Phần ảo của số phức z bằng: − 2 . 0,25 1. (1,0 điểm) Gọi H là trung điểm của BC, D là trung điểm AH, ta có AH ⊥ BC. Do đó tọa độ D(x; y) thỏa mãn hệ: 40 0 xy xy + −= ⎧ ⎨ −= ⎩ ⇒ D(2; 2) ⇒ H(− 2; − 2). 0,25 Đường thẳng BC đi qua H và song song d, suy ra BC có phương trình: x + y + 4 = 0. 0,25 Điểm B, C thuộc đường thẳng BC: x + y + 4 = 0 và B, C đối xứng nhau qua H(− 2; − 2), do đó tọa độ B, C có dạng: B(t; − 4 − t), C(− 4 − t; t). Điểm E(1; −3) nằm trên đường cao đi qua đỉnh C của tam giác ABC, suy ra: AB JJJG . CE JJJG = 0 ⇔ (t − 6)(5 + t) + (− 10 − t)(− 3 − t) = 0 0,25 ⇔ 2t 2 + 12t = 0 ⇔ t = 0 hoặc t = − 6. Ta được: B(0; − 4), C(− 4; 0) hoặc B(− 6; 2), C(2; − 6). 0,25 2. (1,0 điểm) Đường thẳng ∆ đi qua điểm M(−2; 2; −3), nhận v G = (2; 3; 2) làm vectơ chỉ phương. Ta có: MA JJJG = (2; −2; 1), ,vMA ⎡ ⎤ ⎣ ⎦ G JJJG = (7; 2; −10). 0,25 Suy ra: d(A, ∆) = ,vMA v ⎡ ⎤ ⎣ ⎦ G JJJG G = 49 4 100 494 ++ ++ = 3. 0,25 Gọi (S) là mặt cầu tâm A, cắt ∆ tại B và C sao cho BC = 8. Suy ra bán kính của (S) là: R = 5. 0,25 VI.b (2,0 điểm) Phương trình (S): x 2 + y 2 + (z + 2) 2 = 25. 0,25 Ta có: 3 (1 3 )i− = − 8. 0,25 Do đó z = 8 1 i − − = − 4 − 4i, suy ra z = − 4 + 4i. 0,25 ⇒ z + i z = − 4 − 4i + (− 4 + 4i)i = − 8 − 8i. 0,25 VII.b (1,0 điểm) Vậy: ziz+ = 8 2 . 0,25 ------------- Hết ------------- • M ∆ B C A • H M ∆ P C • E d A B C H D BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀTHITUYỂN SINH CAOĐẲNG NĂM 2009 Môn: TOÁN; Khối: A Thời gian làm bài:180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số với là tham số thực. 32 (2 1) (2 ) 2 (1),yx m x mx=− − +− + m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi (1) 2.m = 2. Tìm các giá trị của để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương. m (1) (1) Câu II (2,0 điểm) 1. Giải phương trình 2 (1 2sin ) cos 1 sin cos .x xx+=++x 2. Giải bất phương trình 12 2 5 1( ).xx xx++ − ≤ + ∈\ Câu III (1,0 điểm) Tính tích phân 1 2 0 () xx .I exed − =+ ∫ x Câu IV (1,0 điểm) Cho hình chóp tứ giác đều có .S ABCD ,2AB a SA a==. Gọi ,M N và lần lượt là trung điểm của các cạnh và CD Chứng minh rằng đường thẳng P ,SA SB . MN vuông góc với đường thẳng Tính theo thể tích của khối tứ diện .SP a .AMNP Câu V (1,0 điểm) Cho và b là hai số thực thỏa mãn a 0ab1.< << Chứng minh rằng ab 22 ln ln ln ln .ba a b−>− PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI. a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ cho tam giác , Oxy ABC có C (1; 2), − − đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình là 59 xy 0 + −= và 350 xy . + −= Tìm tọa độ các đỉnh A và .B 2. Trong không gian với hệ tọa độ cho các mặt phẳng và Viết phương trình mặt phẳng đi qua điểm vuông góc với hai mặt phẳng , Oxyz 1 (): 2 3 4 0Px y z+++= 2 ():3 2 10.Pxyz+−+= ()P (1; 1; 1),A 1 ()P và () 2 .P Câu VII. a (1,0 điểm) Cho số phức thỏa mãn Tìm phần thực và phần ảo của z 2 (1 ) (2 ) 8 (1 2 ) .iizi i+−=+++z .z B. Theo chương trình Nâng cao Câu VI .b (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ cho các đường thẳng ,Oxy 1 :23xy 0Δ −−= và Tìm tọa độ điểm 2 :1xyΔ++=0. M thuộc đường thẳng 1 Δ sao cho khoảng cách từ điểm M đến đường thẳng 2 Δ bằng 1 2 ⋅ 2. Trong không gian với hệ tọa độ cho tam giác có và trọng tâm Viết phương trình đường thẳng ,Oxyz ABC (1;1;0), (0;2;1)AB (0; 2; 1).G − Δ đi qua điểm và vuông góc với mặt phẳng C ().ABC Câu VII. b (1,0 điểm) Giải phương trình sau trên tập hợp các số phức: 437 2. zi zi zi − − = − − ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀTHITUYỂN SINH CAOĐẲNG NĂM 2009 Môn: TOÁN; Khối: B Thời gian làm bài:180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số với là tham số thực. 32 (2 1) (2 ) 2 (1),yx m x mx=− − +− + m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi (1) 2.m = 2. Tìm các giá trị của để hàm số (1 có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương. m ) (1) Câu II (2,0 điểm) 1. Giải phương trình 2 (1 2sin ) cos 1 sin cos .x xx+=++x 2. Giải bất phương trình 12 2 5 1( ).xx xx++ − ≤ + ∈\ Câu III (1,0 điểm) Tính tích phân 1 2 0 () xx .I exed − =+ ∫ x Câu IV (1,0 điểm) Cho hình chóp tứ giác đều có .S ABCD ,2AB a SA a==. Gọi ,M N và lần lượt là trung điểm của các cạnh và CD Chứng minh rằng đường thẳng P ,SA SB . MN vuông góc với đường thẳng Tính theo thể tích của khối tứ diện .SP a .AMNP Câu V (1,0 điểm) Cho và là hai số thực thỏa mãn 0 a b 1.ab< << Chứng minh rằng 22 ln ln ln ln .abba a b−>− PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI. a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ cho tam giác có C,Oxy ABC (1; 2),− − đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình là 59xy 0+ −= và 350xy .+ −= Tìm tọa độ các đỉnh A và .B 2. Trong không gian với hệ tọa độ cho các mặt phẳng và Viết phương trình mặt phẳng đi qua điểm vuông góc với hai mặt phẳng và . ,Oxyz 1 (): 2 3 4 0Px y z+++= 2 ():3 2 10.Pxyz+−+= ()P (1; 1; 1),A 1 ()P 2 ()P ) (2 ) 8 (1 2 ) .iizi iz+−=+++ y 0 Câu VII. a (1,0 điểm) Cho số phức thỏa mãn (1 Tìm phần thực và phần ảo của . z 2 z B. Theo chương trình Nâng cao Câu VI .b (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Ox cho các đường thẳng , 1 :23xyΔ −−= và Tìm tọa độ điểm 2 :1xyΔ++=0. M thuộc đường thẳng 1 Δ sao cho khoảng cách từ điểm M đến đường thẳng 2 Δ bằng 1 2 ⋅ 2. Trong không gian với hệ tọa độ cho tam giác có và trọng tâm Viết phương trình đường thẳng ,Oxyz ABC (1; 1; 0), (0; 2; 1)AB (0; 2; 1).G − Δ đi qua điểm và vuông góc với mặt phẳng C ().ABC Câu VII. b (1,0 điểm) Giải phương trình sau trên tập hợp các số phức: 437 2. zi zi zi − − = − − ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀTHITUYỂN SINH CAOĐẲNG NĂM 2009 Môn: TOÁN; Khối: D Thời gian làm bài:180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số với là tham số thực. 32 (2 1) (2 ) 2 (1),yx m x mx=− − +− + m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi (1) 2.m = 2. Tìm các giá trị của để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương. m (1) (1) Câu II (2,0 điểm) 1. Giải phương trình 2 (1 2sin ) cos 1 sin cos .x xx+=++x 2. Giải bất phương trình 12 2 5 1( ).xx xx++ − ≤ + ∈\ Câu III (1,0 điểm) Tính tích phân 1 2 0 () xx .I exed − =+ ∫ x Câu IV (1,0 điểm) Cho hình chóp tứ giác đều có .S ABCD ,2AB a SA a==. Gọi ,M N và lần lượt là trung điểm của các cạnh và CD Chứng minh rằng đường thẳng P ,SA SB . MN vuông góc với đường thẳng Tính theo thể tích của khối tứ diện .SP a .AMNP Câu V (1,0 điểm) Cho và b là hai số thực thỏa mãn a 0ab1.< << Chứng minh rằng ab 22 ln ln ln ln .ba a b−>− PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI. a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ cho tam giác có C,Oxy ABC (1; 2),− − đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình là 59xy 0+ −= và 350xy .+ −= Tìm tọa độ các đỉnh A và .B 2. Trong không gian với hệ tọa độ cho các mặt phẳng và Viết phương trình mặt phẳng đi qua điểm vuông góc với hai mặt phẳng , Oxyz 1 (): 2 3 4 0Px y z+++= 2 ():3 2 10.Pxyz+−+= ()P (1; 1; 1),A 1 ()P và () 2 .P Câu VII. a (1,0 điểm) Cho số phức thỏa mãn Tìm phần thực và phần ảo của z 2 (1 ) (2 ) 8 (1 2 ) .iizi i+−=+++z .z B. Theo chương trình Nâng cao Câu VI .b (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ cho các đường thẳng ,Oxy 1 :23xy 0Δ −−= và Tìm tọa độ điểm 2 :1xyΔ++=0. M thuộc đường thẳng 1 Δ sao cho khoảng cách từ điểm M đến đường thẳng 2 Δ bằng 1 2 ⋅ 2. Trong không gian với hệ tọa độ cho tam giác ,Oxyz ABC có và trọng tâm Viết phương trình đường thẳng (1;1;0), (0;2;1)AB (0; 2; 1).G − Δ đi qua điểm và vuông góc với mặt phẳng C ().ABC Câu VII. b (1,0 điểm) Giải phương trình sau trên tập hợp các số phức: 437 2. zi zi zi − − = − − ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: [...]... theo a -Ht Thớ sinh khụng c s dng ti liu Cỏn b coi thi khụng gii thớch gỡ thờm H v tờn thớ sinh: S bỏo danh: B GIO DC V O TO THI TUYN SINH CAO NG NM 2008 Mụn thi: TON, khi B Thi gian lm bi: 180 phỳt, khụng k thi gian phỏt CHNH THC PHN CHUNG CHO TT C TH SINH Cõu I (2 im) x x 1 1 Kho sỏt s bin thi n v v th ( C ) ca hm s ó cho Cho hm s y = 2 Tỡm m ng thng d : y = x +... theo a -Ht Thớ sinh khụng c s dng ti liu Cỏn b coi thi khụng gii thớch gỡ thờm H v tờn thớ sinh: S bỏo danh: B GIO DC V O TO THI TUYN SINH CAO NG NM 2008 Mụn thi: TON, khi D Thi gian lm bi: 180 phỳt, khụng k thi gian phỏt CHNH THC PHN CHUNG CHO TT C TH SINH Cõu I (2 im) x x 1 1 Kho sỏt s bin thi n v v th ( C ) ca hm s ó cho Cho hm s y = 2 Tỡm m ng thng d : y = x +... (2 i ) 2 0,50 Nghim ca phng trỡnh ó cho l z = 1 + 2i v z = 3 + i 0,25 -Ht - Trang 4/4 B GIO DC V O TO THI TUYN SINH CAO NG NM 2008 Mụn thi: TON, khi A Thi gian lm bi: 180 phỳt, khụng k thi gian phỏt CHNH THC PHN CHUNG CHO TT C TH SINH Cõu I (2 im) x x 1 1 Kho sỏt s bin thi n v v th ( C ) ca hm s ó cho Cho hm s y = 2 Tỡm m ng thng d : y = x + m ct th ( C ) ti hai im phõn bit Cõu... khụng c s dng ti liu Cỏn b coi thi khụng gii thớch gỡ thờm H v tờn thớ sinh: S bỏo danh: B GIO DC V O TO P N - THANG IM THI TUYN SINH CAO NG NM 2008 Mụn: TON, khi A (ỏp ỏn - Thang im gm 04 trang) CHNH THC Cõu I Ni dung 1 im 2,00 Kho sỏt s bin thi n v v th ca hm s (1,00 im) 1 Ta cú y = 1 + x 1 Tp xỏc nh: D = \ {1} 1 S bin thi n: y ' = < 0, x D (x 1) 2 Bng bin thi n: x 1 y' y 0,25 + 1 0,25...B GIO DC V O TO CHNH THC P N THANG IM THI TUYN SINH CAO NG NM 2009 Mụn: TON; Khi: A (ỏp ỏn - thang im gm 04 trang) P N THANG IM Cõu I (2,0 im) ỏp ỏn im 1 (1,0 im) Kho sỏt s bin thi n v v th Khi m = 2, hm s (1) tr thnh y = x3 3 x 2 + 2 Tp xỏc nh: Chiu bin thi n: - Ta cú y ' = 3 x 2 6 x; y ' = 0 x = 0 hoc x = 2 - Hm s ng bin trờn cỏc khong (;... khong (; 0) v (2; + ) - Hm s nghch bin trờn khong (0; 2) Cc tr: - Hm s t cc i ti x = 0, yC = y(0) = 2 - Hm s t cc tiu ti x = 2, yCT = y(2) = 2 Cỏc gii hn ti vụ cc: lim y = v lim y = + x Bng bin thi n: x 0 + 2 0 + 0 + th 0,25 + 2 y 0,25 x+ y' 0,25 2 y 2 2 O 0,25 x 2 2 (1,0 im) Tỡm cỏc giỏ tr ca m Ta cú y ' = 3x 2 2 ( 2m 1) x + 2 m m tha món yờu cu ca bi toỏn khi v ch khi phng trỡnh y... 2 Do ( x + y ) 4xy nờn t 2 2 ( t 2 2 ) 2 t 2 2 0,25 3 Xột f ( t ) = t 3 t 2 + 6t + 3 vi t [ 2; 2] 2 Ta cú : f ' ( t ) = 3t 2 3t + 6 t = 2 [ 2; 2] f '( t ) = 0 t = 1 [ 2; 2] Bng bin thi n: t -2 f(t) 1 + 0 2 - 13 2 f(t) -7 Vy max P = 0,50 1 13 , min P = 7 2 V.a 2,00 1 Tỡm A Ox, B Oy (1,00 im) +) A Ox, B Oy A ( a; 0 ) , B ( 0; b ) , AB = ( a; b ) 0,25 +) Vect ch phng ca d l u . DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2008 Môn thi: TOÁN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG. DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2010 Môn: TOÁN; Khối: D Thời gian làm bài: 180 phút, không kể thời gian phát đề. I. PHẦN CHUNG