Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
222,55 KB
Nội dung
MỤC LỤC MỞ ĐẦU……………………………………………………………………………1 1.1 Lí chọn đề tài………………………………………………………………… 1.2 Mục đích nghiên cứu…………………………………………………………… 1.3 Đối tượng nghiên cứu…………………………………………………………… 1.4 phương pháp nghiên cứu………………………………………………………….2 1.5 Những điểm sáng kiến kinh nghiệm 2 NỘI DUNG…………………………………………………………………………3 2.1 Cơ sở lí luận………………………………………………………………………3 2.2 Thực trạng đề tài…………………………………………………………… 2.3 Các giải pháp thực hiện………………………………………………………… 2.3.1 Xác định nguyên hàm tích phân phương pháp phân tích …………… .4 2.3.2 Xác định nguyên hàm tích phân phương pháp đổi biến số…………… 2.3.3 Tính tích phân phương pháp tích phân phần……………………… 2.3.4 Xác định tích phân phương pháp dựng nguyên hàm phụ…………… 2.3.5 Xác định tích phân hàm số lượng giác…………………………………8 2.3.6 Tích phân hàm số hữu tỉ ………………………………………………… 2.3.7.Tích phân hàm số chứa dấu giá trị tuyệt đối……………………… 10 2.3.8.Một số tích phân đặc biệt 11 2.3.9.Một số tập trắc nghiệm 11 3.KẾT LUẬN - KIẾN NGHỊ ……………………………………………………… 14 3.1 Kết luận………………………………………………………………………….14 3.2 Kiến nghị……………………………………………………………………… 14 TÀI LIỆU THAM KHẢO……………………………………………………………15 DANH MỤC…………………………………………………………………………15 MỞ ĐẦU 1.1 Lí chọn đề tài Để giúp học sinh giải số toán nguyên hàm, tích phân kỳ thi, đặc biệt kỳ thi THPT quốc gia Để học sinh giải nhanh tốn trắc nghiệm với thời gian ngắn mà khơng đơn dùng máy tính Casio mà phải sử dụng kiến thức cách hợp lí, sử dụng cách linh hoạt phương pháp giải nguyên hàm, tích phân cách nhanh Muốn phải bồi dưỡng lực tư độc lập, tư tích cực tư sáng tạo học sinh kỹ thuật tính nhanh, trước tiên phải trang bị cho em kiến thức phổ thông vững trắc, khả giải dạng tập Muốn vậy, người giáo viên phả vận dụng phương pháp khác nhau, hướng em vào môi trường hoạt động tich cực, xem học tập trình tự khám phá liên tục Học tập phải thực nhu cầu, mang đậm tính tự giác, chủ động sáng tạo học sinh Người thầy giỏi phải giúp học sinh xem xét toán nhiều góc độ khác nhau, kích thích liên tưởng, kết nối giả thiết yêu cầu toán Giữa toán chưa biết cách giải với toán quen thuộc biết cách giải Biết phân tích, tổng hợp, so sánh, trường hợp riêng lẻ để giải toán nhanh Với lý chọn chọn đề tài “Một số biện pháp giúp học sinh giải nhanh toán nguyên hàm, tích phân dạng trắc nghiệm” 1.2 Mục đích nghiên Cùng với mơn học khác, mơn tốn giúp học phần đào tạo người lao động mới, có tri thức khoa học, động, sáng tạo cơng việc, đóng góp phần khơng nhỏ thời đại khoa học kĩ thuật phát triển vũ bão Từ thực tiễn kiến thức nguyên hàm, tích phân phong phú đa dạng, dạng tốn mà ta hay sử dụng vào thực tế như: Tính diện tích hình phẳng, thể tích vật thể trịn xoay Thời lượng phân phối chương trình ỏi Vì tơi mạnh dạn đưa sáng kiến kinh nghiệm với mục đích giúp học sinh giải cách nhanh gọn số tập nguyên hàm, tích phân Giúp em đạt hiệu cao kỳ thi, đặc biệt kỳ thi THPT Quốc gia Vì tơi mạnh dạn chọn đề tài “Một số biện pháp giúp học sinh giải nhanh tốn ngun hàm, tích phân dạng trắc nghiệm” 1.3 Đối tượng nghiên cứu: Cách giải số dạng nguyên hàm, tích phân 1.4 Phương pháp nghiên cứu Trong chương trình giải tích 12, kiến thức nguyên hàm tích phân chiếm phần quan trọng Tuy nhiên toán nguyên hàm tích phân chưa nhiều dừng lại tốn đơn giản, chưa có nhiều phương pháp kỹ thuật giải dạng cho học sinh Học sinh giải toán theo hướng định Do tốn ngun hàm tích phân chưa khai thác hết cách giải Qua trình giảng dạy học tập, tìm hiểu sách đặc biệt mạng internet nhận thấy việc dạy cho học sinh giải cách nhanh toán cần kiến để phù hợp với việc giải toán cho kỳ thi đặc biệt kỳ thi THPT Quốc gia cấp bách 1.5 Những điểm sáng kiến kinh nghiệm Khi tơi phân cơng dạy mơn Tốn khối 12 nhận thấy dạy theo sách giáo khoa học sinh mơ hồ, không nhận dạng tốn để giải nhanh Từ tơi có suy nghĩ làm cách để em giải nhanh tốn ngun hàm, tích phân Trong q trình giảng dạy tơi tích lũy đề tài “Giúp học sinh giải nhanh tốn ngun hàm, tích phân dạng trắc nghiệm” NỘI DUNG 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Dựa vào định nghĩa tích phân Các tính chất tích phân Các phương pháp tính tích phân, ứng dụng tích phân để tính diện tích, thể tích 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh ngiêm Học sinh biết vận dụng định nghĩa, định lí cách máy móc mà không phân loại thành dạng 2.3 Các giải pháp thực 2.3.1 Xác định nguyên hàm tích phân phương pháp phân tích Phương pháp chung: Bước 1: Biến đổi f(x) dạng: n f(x) = i 1 i f i ( x) với fi(x) nguyên hàm bảng công thức i số Bước 2: Khi đó: n n i 1 i 1 f ( x)dx i f i ( x)dx i f i ( x)dx Ví dụ 1: Tinh tích phân : I dx 1 ex Giải: Sử dụng đồng thức: = (1 + ex) – ex Ta được: 1 ex ex ex 1 1 ex 1 ex 1 ex ex d 1 e x I 1 dx dx x 1 ex 1 e = x - ln(1 + ex) + C dx Ví dụ 2: Tích phân I x 5x bằng: A I = B I ln D I = ln2 C I = ln2 [1] Nhận xét : - Nếu học sinh khơng biết cách phân tích đưa dạng gặp tốn khó giải - Ở ví dụ ta sử dụng phương pháp đồng thức a b x 5x x x 2 - Nếu bậc tử cao bậc mẫu ta chia tử cho mẫu trước thực đồng thức Ví dụ 3: Giả sử sin 3x sin xdx (a b) A B 2 a+b C 10 D Ở ví dụ ta thấy muốn tính nguyên hàm tích phân ta phải biến đổi lượng giác tích thành tổng sin3x.sin2x = (cosx – cos5x ) Như vậy: Nếu ta gặp hàm lượng giác dạng tích cách làm nhanh thường biến đổi tích thành tổng 2.3.2 Xác định nguyên hàm, tích phân phương pháp đổi biến số Phương pháp đổi biến số sử dụng phổ biến việc tính tích phân Phương pháp đổi biến số để xác định nguyên hàm dựa vào định lí sau Định lý1: a.Nếu f(x)dx = F(x) + C u = (x) hàm số có đạo hàm thì: f(u)du = F(u) + C b Nếu hàm số f(x) liên tục đặt x = (t) (t) với đạo hàm ’(t) hàm số liên tục, ta được: f(x)dx = f[(t)].’(t)dt Định lý 2: a Nếu f(x)dx = F(x) + C u = (x) hàm số có đạo hàm [a,b] thì: (b) (b) f (u ) du F (u ) (a) (a) b Nếu f(x) hàm số xác định liên tục đoạn [a,b], hàm số x = (t) xác định liên tục đoạn [, ] thoả mãn điều kiện sau: (i) Tồn đạo hàm ’(t) liên tục đoạn [, ] (ii) () = a ( ) = b (iii) Khi : b f ( x )dx a f (t ) ' (t )dt [1] Tuy nhiên khó phương pháp cách chọn hàm x = (t) hay u = (x) cho phù hợp với toán cụ thể Lưu ý: Các dấu hiệu dẫn tới việc lựa chọn ẩn phụ: Dấu hiệu a x Cách chọn x x x x x2 a2 ax , ax a sin t , t 2 a cos t , t ,t , , t sin t 2 a , t 0, , t cos t a x a cos 2t ax ax x a b x Hàm có mẫu số Hàm f(x, f (x) ) Hàm f(x) = x a x b x= a + (b – a)sin2t t mẫu số t = f (x) t = xa xb Hàm f(x) = f(lnnx; x t = lnx ) I Ví dụ 1: Tính tích phừn: dx x x2 1 Giải: Đổi biến số: t x t x tdt xdx Ta có: I dx x x 1 x xdx x2 1 tdt dt 1 t 1t t t t dt t 1 ln C t ln x C x Ví dụ 2: Tính tích phân: I x dx x2 1 Giải: Đặt: t x x dt x 1 dx xdx tdt dx t x x 3t 2 x 8t 3 Khi đó: dx x x2 1 tdt x2 x2 1 tdt dt 1 1 dt t 1t t t t I 3 1 dt ln t ln t 2 t t 2 3 t 1 ln ln 2 t 1 [2] 2.3.3 Tínhnguyên hàm, tích phân phương pháp phần Khi gặp dạng sau ta dùng phương pháp tích phân phần Dạng 1: P(x)axdx, P(x)sin(ax +b)dx, P(x)cos(ax + b)dx đặt: u = P(x) Dạng : P(x)logaxdx Đặt u = loga x Dạng 3: eaxsinbxdx, eaxcosbxdx nên dùng tích phân phần hai lần để tính với cách đặt: u = eax u = sinbx ; u = cosbx Sau ví dụ nhằm minh hoạ cho tính phổ biến tiện lợi phương pháp này: Ví dụ1 : Tinh tích phân : I x ln( x Giải: Ta viết lại I dạng: Đặt: x 1 u ln x x2 1 x2 1 dx du x x x2 1 dx dv x2 1 v x 1 x 1) x2 1 I ln( x dx x 1) x x 1 dx dx x2 1 Đặc biệt: Khi toán thi trắc nghiệm Ví dụ : Gọi F(x) = ( ax3 + bx2 +cx + d )ex nguyên hàm hàm số f(x) = ( 2x3 + 9x2 - 2x + )ex Tính a2 + b2 +c2 +d2 A 244 B 247 C 245 D 246 - Như gặp dạng tích phân ta tính nào? - Cũng dùng tích phân phần để tính nhanh ta làm sau : F(x) = f(x)ex - f’(x)ex + f”(x)ex - f’’’(x)ex sau ta cộng tổng bình phương hệ số chọn đáp án Nhận xét: Nếu ta dùng tích phân phần rắc rối dài dịng dẫn đến thời gian làm lâu, nên q trình giảng tơi đưa cách tính nhanh để có kết nhanh trình làm trắc nghiệm 2.3.4 Xác định nguyên hàm, tích phân phương pháp dựng nguyên hàm phụ Phương pháp xác định nguyên hàm hàm số f(x) kỹ thuật dựng hàm phụ xuất phát từ ý tưởng chủ đạo tìm kiếm hàm g(x) cho nguyên hàm hàm số f(x) g(x) dễ xác định hơn, từ suy nguyên hàm F(x) hàm số f(x).Để xác định nguyên hàm hàm số f(x) theo phương pháp này, ta tiến hành thực theo bước sau: - Bước 1: Tìm kiếm hàm số g(x) - Bước 2: Xác định nguyên hàm hàm số f(x) g(x), tức là: F ( x ) G ( x ) A( x ) C F ( x) G ( x) B ( x) C ' - Bước 3: Từ hệ ta nhận được: F(x) = [A(x) + B(x)] + C Đối với phương pháp này, điều khác cách tìm hàm số g(x) để cho việc giải toán dễ dàng sin x sin x cos x cos x sin x cos x Ví dụ : Tìm ngun hàm hàm số: f(x) = Hướng dẫn : Chọn hàm số phụ: g(x) = Gọi F(x) G(x) theo thứ tự nguyên hàm hàm số f(x), g(x) Ta có: sin x cos x f(x) + g(x) = sin x cos x Và tính f(x) - g(x) = sin x cos x [3] sin x cos x 2.3.5 Xác địnhnguyên hàm, tích phân hàm số lượng giác Để xác định tích phân hàm số lượng giác ta dùng cá phương pháp sau: a)Sử dụng nguyên hàm b) Các hàm phân thức hữu tỉ hàm số lượng giác c ) Sử dụng phương pháp biến đổi công thức lượng giác d) Phương pháp đổi biến I = R(sinx, cosx)dx, ta giải cách đổi biến lựa chọn hướng sau: -Hướng 1: Nếu R( - sinx, cosx) = -R(sinx, cosx) đổi biến t = cosx -Hướng 2: Nếu R(sinx, - cosx) = -R(sinx, cosx) đổi biến t = sinx -Hướng 3: Nếu R(-sinx, - cosx) = R(sinx, cosx) đổi biến t = tgx -Hướng 4: Mọi trường hợp đưa tích phân hàm hữu tỉ phép đổi x biến t = tg e) Phương pháp tích phân phần f) Sử dụng nguyên hàm phụ Ví dụ : sin x Tính: I sin x dx Giải: Nhận xét R (sin x, cos x ) sin x sin x sin x cos x sin x sin x( cos x) sin x R (sin x, cos x ) Từ nhận xét ta đổi biến Đặt: t = sinx, dt = cosxdx t = 0; Đổi cận: x = x= t = -1 Ví dụ : Tìm số A , B để hàm số f(x) = A.sinx + B thỏa điều kiện: f ' (1) = ; f (x)dx A A B B A B A C B HD: f ' (x) = A.cosx f ' (1) = - A mà f ' (1) = A = 2 0 f (x)dx = 2B mà f (x)dx B = D A B 2 [6] 2.3.6 Tích nguyên hàm, phân hàm số hữu tỉ Để xác định cách tính tích phân hàm số hữu tỉ ta cần linh hoạt lựa chọn phương pháp sau: a) Phương pháp tam thức bậc hai b) Phương pháp phân tích c) Phương pháp đổi biến d) Phương pháp tích phân phần e) Sử dụng phương pháp khác nhau: kết hợp việc dựng công thức đổi biến số với kĩ thuật phân tích số hạng đơn giản tích phân phần Tuy nhiên, chọn cách sử dụng phương pháp cần phải vào dạng tốn cụ thể Ví dụ 1: dx Tính tích phân: I x x Giải: Biến đổi: 1 1 1 2 x 4x x x x x Khi : 1 dx dx I 2 x x +) Ta xác định tích phân t 2; Đặt x = tgt, dx 1 tg t dt & Suy ra: Đổi cận: x = t = 0; I1 dx x 1 dx 1 tg t dt dt x2 1 tg t x=1t= a I dt t 04 Khi đó: dx +) Ta xác định tích phân I x Đặt x = Suy ra: t ; 2 tgt, dx tg t dt & dx x 3 tg t dt dt 3(1 tg t ) [3] Đổi cận: x = t = 0; x=1t= Khi I2 dt 3 t Từ ta có: I= Nhận xét: Như vậy, ta kết hợp nhiều phương pháp lại với để giải ví dụ trên, cụ thể ví dụ ta sử dụng đồng thời hai phương pháp phương pháp phân tích phương pháp đổi biến 2.3.7.Tích phân hàm số chứa dấu giá trị tuyệt đối b Để tính tích phân : I f ( x, m) dx ta thực theo bước sau: a +) Bước 1: Xétt dấu biểu thức f(x,m) đoạn [a, b] Từ đố phân đoạn [a, b] thành đoạn nhỏ mà đoạn f(x, m) có dấu xác định, giả sử: [a, b] = [a, c1] [c1, c2] … [ck, b] +) Bước 2: Khi ta có : c1 c2 a c1 b I f ( x, m) dx f ( x, m) dx f ( x, m) dx ck Ví dụ : Tính tích phân: I x x a dx (a > 0) Giải: Ta xét trường hợp sau: Trường hợp 1: Nếu a 1, ta có: x ax I x ( x a )dx a Trường hợp 2: Nếu < a < 1, ta có: a I x( x a )dx x( x a )dx a x ax a x ax 0 [4] a a3 a3 a a3 a3 a3 a 3 3 2.3.8.Một số tích phân đặc biệt : Khi làm tốn ngun hàm tích phân thường lúng túng gặp số tốn đặc biệt: Sử dụng tính chẵn , lẻ hàm số Nếu hàm số y = f(x) hàm lẻ f ( x)dx Ví dụ : tan xdx = Nếu hàm số y = f(x) hàm chẵn Và Ví dụ : f ( x) dx ax 1 f ( x )dx f ( x )dx a f ( x)dx x4 1 1 e x 1dx 0 ( x 1)dx [5] 2.3.9.Một số tập trắc nghiệm : 10 Bài 1: Cho hàm số f(x) có đạo hàm liên tục [0;1], thỏa mãn f ( x ) f ( x 1) 1 x Giá trị tích phân f ' ( x ) dx A B C 1 Lời giải Ta có f ' ( x)dx f ( x) Từ f ( x ) f ( x 1) 1 x2 D f (1) f (0) f (0) 2 f (0) f (1) 2 f (1) f (0) f (1) Vậy f ' ( x)dx chọn đáp án C Bài 2: Cho hàm số f(x) có đạo hàm liên tục [0;1], thỏa mãn f(0) = f(1) = 1 x Biết e f ( x) f ' ( x) dx ae b Tính Q a 2018 b 2018 A Q = 2018 B Q = C Q = -2 C Q = -2018 x x x Lời giải: Ta có e f ( x) f ' ( x) dx e f ( x)' dx e f ( x) e Suy 1 0 a Q 12018 ( 1) 2018 b 1 Chọn B 2017 Bài Cho f ( x) dx Tính tích phân I e 2017 1 0 A I = Lời giải Đặt Đổi cận: B I = t ln( x 1) Suy dt C I = D I = xdx dt xdx 2 x 1 x 1 x t e 2017 t 2017 x Khi I = 2017 f (t ) dt 2017 f ( x) dx Chọn đáp án A Bài 4: Cho hàm số f(x) có đạo hàm liên tục Và x f ln( x 1) dx x 1 f (0) Tính 0; thỏa mãn f ' ( x) cos xdx 10 f ( x) sin xdx A I = -13 Lời giải Xét B I = -7 f ' ( x) cos xdx 10 , đặt C I = D I = 13 u cos x du sin xdx v f ( x) dv f ' ( x) dx 11 10 Khi 2 f ' ( x) cos xdx cos xf ( x ) f ( x ) sin xdx 0 f ( x) sin xdx = 10+f(0)=13 Chọn đáp án D Bài 5: Cho hàm số f(x) có đạo hàm liên tục [0;1], thỏa mãn f ( x) x f ' ( x) x với x [0;1] Tính I f ( x)dx 2018 A I 2018.2021 Lời giải Từ giả thiết x f ( x) Vậy f ( x)dx I 2019.2021 D I 2018.2019 nhân vế với x ta x f ( x) ' x 2020 x f ( x ) ' x 2020 x 2020 dx Thay x = vào ta có C = I C f ( x) x f ' ( x) x 2018 , 3x f ( x) x f ' ( x) x 2020 Suy 2019.2020 I B x 2021 c 2021 f ( x) x 2018 2021 x 2018 dx 2021 2019.2021 Chọn đáp án C 2.4.Hiệu sáng kiến kinh nghiệm: 2.4.1 Với hoạt động giáo dục: Tôi sử dụng phương pháp giải nguyên hàm ,tích phân vào giảng dạy thấy đa số học sinh hiểu vận dụng cách linh hoạt, dễ dàng giải toán, kết giải tập chương tăng lên rõ rệt Năm học 20162017 20172018 Lớp Tổng số Điểm trở lên 12C4 12C7 43 45 Số lượng 20 25 12C5 45 25 Tỷ lệ 46 % 55 % 55% Điểm từ đến Số Tỷ lệ lượng 18 42% 18 40% 17 38% Điểm Số lượng Tỷ lệ 12% 5% 7% 2.4.2 Với thân : Trong trình giảng dạy sử dụng sáng kiến kinh nghiệm vào dạy tơi dẫn dắt học sinh áp dụng tập cách nhanh chóng, định hướng cho học sinh giải nhanh số tốn ngun hàm, tích phân 12 2.4.3Với đồng nghiệp : Trong q trình sinh hoạt chun mơn tơi đưa sáng kiến kinh nghiệm mình, đồng nghiệp tổ đón nhận đóng góp ý kiến để dạy sâu sắc hơn, hoàn thiện 2.4.4 Với nhà trường: Với sáng kiến kinh nghiệm đồng nghiệp trường nói chung thân tơi nói riêng đóng góp phần nhỏ để chất lượng nhà trường lên Kết luận kiến nghị: 3.1 Kết luận: Như tơi thấy phương pháp có hiệu tương đối trình dạy học học sinh THPT đặc biệt đáp ứng nhu cầu cần thiết học sinh kỳ thi, đặc biệt kỳ thi THPT quốc gia hành Theo tơi dạy phần tốn ngun hàm, tích phân ứng dụng giáo viên cần rõ dạng toán cách giải tương ứng để học sinh nắm tốt Mặc dù cố gắng tìm tịi, nghiên cứu song chắn cịn có nhiều thiếu sót hạn chế Tơi mong quan tâm tất đồng nghiệp bổ sung góp ý cho tơi Tơi xin chân thành cảm ơn 3.2 Kiến nghị : - Đề nghị cấp lãnh đạo tạo điều kiện giúp đỡ học sinh giáo viên có nhiều tài liệu sách tham khảo đổi phòng thư viện để nghiên cứu học tập nâng cao kiến thức chuyên môn nghiệp vụ - Nhà trường cần tổ chức bổi trao đổi phương pháp giảng dạy Có tủ sách lưu lại tài liệu chuyên đề bồi dưỡng ôn tập giáo viên hàng năm để làm cở sở nghiên cứu phát triển chuyên đề - Học sinh cần tăng cường học tập trao đổi, học nhóm nâng cao chất lượng học tập Thanh hóa, ngày 25 tháng năm 2018 Tơi xin cam đoan sáng kiến viết, khơng coppi, không chép XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Người viết sáng kiến Lê Thị Hằng 13 TÀI LIỆU THAM KHẢO [1] Sách giáo khoa giải tích 12 - Nhà xuất giáo dục [2] Sách hướng dẫn giảng dạy - Nhà xuất giáo dục [3] Tài luệu tập huấn sách giáo khoa - Nhà xuất Giáo dục [4] Các giảng luyện thi mơn tốn - Nhà xuất giáo dục [5] Đề thi ĐH mơn tốn năm đề thi minh họa năm 2017 GD ĐT [6] Đề thi ĐH mơn tốn năm đề thi minh họa năm 2017 GD ĐT [7] Mạng internet Thứ tự DANH MỤC Tên SKKN Một số kĩ thuật giải phương trình, bất phương trình vơ tỉ Giải Đạt giải C hội đồng Khoa học tỉnh công nhận năm học 2013-2014 14 15 ... dạn chọn đề tài ? ?Một số biện pháp giúp học sinh giải nhanh tốn ngun hàm, tích phân dạng trắc nghiệm? ?? 1.3 Đối tượng nghiên cứu: Cách giải số dạng nguyên hàm, tích phân 1.4 Phương pháp nghiên cứu... ngun hàm, tích phân dạng trắc nghiệm? ?? NỘI DUNG 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Dựa vào định nghĩa tích phân Các tính chất tích phân Các phương pháp tính tích phân, ứng dụng tích phân. .. khoa học sinh mơ hồ, không nhận dạng tốn để giải nhanh Từ tơi có suy nghĩ làm cách để em giải nhanh tốn ngun hàm, tích phân Trong q trình giảng dạy tơi tích lũy đề tài ? ?Giúp học sinh giải nhanh