Phương pháp chiếu giải bài toán cân bằng hai cấp

79 3 0
Phương pháp chiếu giải bài toán cân bằng hai cấp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ì ì P ữỡ ❱➠♥ ❚❤✐ P❍×❒◆● P❍⑩P ❈❍■➌❯ ●■❷■ ❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❍❆■ ❈❻P ▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈ ❚❤→✐ ◆❣✉②➯♥✱ ♥➠♠ ✷✵✶✻ ✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆ ❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P ữỡ Pì PP ❈❹◆ ❇➀◆● ❍❆■ ❈❻P ❈❤✉②➯♥ ♥❣➔♥❤✿ ●✐↔✐ ❚➼❝❤ ▼➣ sè✿ ữớ ữợ ❦❤♦❛ ❤å❝✿ ●❙✳❚❙❑❍ ◆●❯❨➍◆ ❳❯❹◆ ❚❻◆ ❚❤→✐ ◆❣✉②➯♥✱ ♥➠♠ ✷✵✶✻ ▲í✐ ❝❛♠ ✤♦❛♥ ❚ỉ✐ ①✐♥ ❝❛♠ ✤♦❛♥ r➡♥❣ ♥ë✐ ❞✉♥❣ tr➻♥❤ ❜➔② tr♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❧➔ tr✉♥❣ t❤ü❝✱ ❦❤æ♥❣ trị♥❣ ❧➦♣ ✈ỵ✐ ❝→❝ ✤➲ t➔✐ ❦❤→❝ ✈➔ ❝→❝ t❤ỉ♥❣ t✐♥ tr➼❝❤ ❞➝♥ tr♦♥❣ ❧✉➟♥ ✈➠♥ ✤➣ ✤÷đ❝ ❝❤➾ rã ỗ ố t ữớ t ❧✉➟♥ ✈➠♥ ❉÷ì♥❣ ❱➠♥ ❚❤✐ ✐ ▲í✐ ❝↔♠ ì♥ ▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ tr♦♥❣ ❦❤â❛ ✷✷ ✤➔♦ t↕♦ ❚❤↕❝ s➽ ❝õ❛ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✲ ✣↕✐ ❤å❝ ữợ sỹ ữợ ❚➜♥✱ ❱✐➺♥ ❚♦→♥ ❤å❝✳ ❚æ✐ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ỡ t tợ t ữợ ữớ t ❝❤♦ tỉ✐ ♠ët ♣❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝✱ t✐♥❤ t❤➛♥ ❧➔♠ ✈✐➺❝ ♥❣❤✐➯♠ tó❝ ✈➔ ✤➣ ❞➔♥❤ ♥❤✐➲✉ t❤í✐ ổ ữợ tổ t ❚ỉ✐ ❝ơ♥❣ ①✐♥ ❜➔② tä ❧á♥❣ ❝↔♠ ì♥ s➙✉ s➢❝ tợ t ổ trữớ ◆❣✉②➯♥✱ ❱✐➺♥ ❚♦→♥ ❤å❝✱ ♥❤ú♥❣ ♥❣÷í✐ ✤➣ t➟♥ t➻♥❤ ❣✐↔♥❣ ❞↕②✱ ❦❤➼❝❤ ❧➺✱ ✤ë♥❣ ✈✐➯♥ tỉ✐ ✈÷đt q✉❛ ♥❤ú♥❣ ❦❤â ❦❤➠♥ tr♦♥❣ ❤å❝ t➟♣✳ ❚ỉ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ❧➣♥❤ ✤↕♦ ❑❤♦❛ ❙❛✉ ✤↕✐ ❤å❝✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✕ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✤➣ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧đ✐✱ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ tỉ✐ ❤å❝ t➟♣✳ ❈✉è✐ ❝ị♥❣✱ tỉ✐ ①✐♥ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ♥❣÷í✐ t❤➙♥ ✈➔ ❜↕♥ ❜➧ ✤➣ ✤ë♥❣ ✈✐➯♥✱ õ♥❣ ❤ë tæ✐ ✤➸ tæ✐ ❝â t❤➸ ❤♦➔♥ t❤➔♥❤ tèt ❦❤â❛ ❤å❝ ✈➔ ❧✉➟♥ ✈➠♥ ❝õ❛ ♠➻♥❤✳ ❚❤→✐ ◆❣✉②➯♥✱ t❤→♥❣ ✹ ♥➠♠ ✷✵✶✻ ◆❣÷í✐ ✈✐➳t ❧✉➟♥ ✈➠♥ ❉÷ì♥❣ ❱➠♥ ❚❤✐ ✐✐ ▼ư❝ ❧ư❝ ▲í✐ ❝❛♠ ✤♦❛♥ ✐ ▲í✐ ❝↔♠ ì♥ ử ởt số ỵ t tt ✈ ▼ð ✤➛✉ ✶ ✶ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✹ ✶✳✶ ✶✳✷ ▼ët sè ❦❤→✐ ♥✐➺♠ ✈➔ ❦➳t q ỡ t ỗ t ỗ ỗ ữợ ỗ ✳ ✳ ✳ ✳ ✽ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈➔ ❝→❝ tr÷í♥❣ ❤đ♣ r✐➯♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✷✳✶ ❇➔✐ t♦→♥ tè✐ ÷✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✷✳✷ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✷✳✸ ❇➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹ ✶✳✷✳✹ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ◆❛s❤ tr♦♥❣ trá ❝❤ì✐ ❦❤ỉ♥❣ ❤đ♣ t→❝ ✶✺ ✐✐✐ ✶✳✷✳✺ ỹ tỗ t t ✳ ✳ ✳ ✳ ✳ ✳ ✶✻ ✶✳✸ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ t÷ì♥❣ ✤÷ì♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✾ ✶✳✹ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❤❛✐ ❝➜♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶ ✶✳✹✳✶ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❤❛✐ ❝➜♣ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✶✳✹✳✷ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ tr➯♥ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ P❤÷ì♥❣ ♣❤→♣ ❝❤✐➳✉ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✷✳✶ ✷✷ ✷✹ ❚❤✉➟t t♦→♥ ❝❤✐➳✉ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❣✐↔ ✤ì♥ ✤✐➺✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ✷✳✷ ❚❤✉➟t t♦→♥ ❝❤✐➳✉ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉ ✳ ✳ ✳ ✳ ✸✶ ✷✳✸ ⑩♣ ❞ö♥❣ ❣✐↔✐ ♠ët sè ❜➔✐ t♦→♥ ❤❛✐ ❝➜♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✷ ✷✳✸✳✶ ❚➻♠ ❝ü❝ t✐➸✉ ❝õ❛ ❤➔♠ ❝❤✉➞♥ ❊✉❝❧✐❞❡ tr➯♥ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✸✳✷ ✹✷ ●✐↔✐ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ tr➯♥ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✸ ❑➳t ❧✉➟♥ ✻✾ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✼✵ ✐✈ ▼ët số ỵ t tt R t số tỹ N t➟♣ sè tü ♥❤✐➯♥✳ H ❦❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt t❤ü❝✳ Rn ❦❤æ♥❣ ❣✐❛♥ ❊✉❝❧✐❞❡ n ❝❤✐➲✉✳ x, y = xT y x = x, x t ổ ữợ tỡ x ✈➔ y ✳ ❝❤✉➞♥ ❝õ❛ ✈➨❝tì x✳ domf ♠✐➲♥ ❤ú✉ ❤✐➺✉ ❝õ❛ ❤➔♠ f ✳ imF ♠✐➲♥ ↔♥❤ ❝õ❛ F epif tr ỗ t f ✳ ϕ (x) = ϕ(x) ✤↕♦ ❤➔♠ ❝õ❛ ϕ t x (x; d) t ữợ d t x (x) ữợ t↕✐ x✳ x f (x, y) ✤↕♦ ❤➔♠ ❝õ❛ ❤➔♠ f (., y) t↕✐ x✳ y f (x, y) ✤↕♦ ❤➔♠ ❝õ❛ ❤➔♠ f (x, ) t↕✐ y ✳ ∂f (x, x) ữợ f (x, ) t x✳ intC ♣❤➛♥ tr♦♥❣ ❝õ❛ t➟♣ C ✳ riC ♣❤➛♥ tr♦♥❣ t÷ì♥❣ ✤è✐ ❝õ❛ t➟♣ C ✳ xk → x ❞➣② xk ❤ë✐ tư tỵ✐ x✳ PC (x) ❤➻♥❤ ❝❤✐➳✉ ❝õ❛ x ❧➯♥ t➟♣ C ✳ ✈ NC (x) ♥â♥ ♣❤→♣ t✉②➳♥ ♥❣♦➔✐ ❝õ❛ C t↕✐ x✳ B[a, r] q✉↔ ❝➛✉ ✤â♥❣ t➙♠ a ❜→♥ ❦➼♥❤ r✳ C ❜❛♦ ✤â♥❣ ❝õ❛ t➟♣ C ✳ lim = lim inf ❣✐ỵ✐ ❤↕♥ ữợ lim = lim sup ợ tr EP (C, f ) ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✳ V IP (C, f ) ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✭✤ì♥ trà✮✳ Sf t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ EP (C, f )✳ SF t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ V IP (C, F )✳ BEP (C, f, g) ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❤❛✐ ❝➜♣✳ M N EP (C, f ) ❜➔✐ t♦→♥ t➻♠ ❝ü❝ t✐➸✉ ❝õ❛ ❤➔♠ ❝❤✉➞♥ tr➯♥ t➟♣ Sf ✳ V IEP (C, f, F ) ❜➔✐ t♦→♥ V IP (Sf , F )✳ BV IP (C, F, G) ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❤❛✐ ❝➜♣✳ ✈✐ ▼ð ✤➛✉ ỵ t t tố ữ f (x), x∈D ✭✶✮ ✈ỵ✐ D ⊂ Rn ❧➔ ❜➔✐ t♦→♥ ✤â♥❣ ✈❛✐ trá q✉❛♥ trå♥❣ tr♦♥❣ ✈✐➺❝ ù♥❣ ❞ö♥❣ t♦→♥ ❤å❝ ✈➔♦ ❝✉ë❝ sè♥❣✳ ❑❤✐ f ❝â ✤↕♦ ❤➔♠ ✭✶✮ ❧✐➯♥ q✉❛♥ tỵ✐✿ f (x), x − x ≥ 0, ∀x ∈ D ✭✷✮ ◆➠♠ ✶✾✻✵ ❙t❛♠♣❛❝❝❤✐❛ ✤÷❛ r❛ ❜➔✐ t♦→♥ tê♥❣ q✉→t✳ ❈❤♦ F : D → Rn ❚➻♠ x ∈ D s❛♦ ❝❤♦ F (x), x − x ≥ 0, ∀x ∈ D ❇➔✐ t♦→♥ ♥➔② ✤÷đ❝ ❣å✐ ❧➔ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✳ ❈❤♦ D ❧➔ t➟♣ ❝♦♥ ❦❤→❝ ré♥❣ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ X ✱ f : D × D → R ❧➔ s♦♥❣ ❤➔♠ ❝➙♥ ❜➡♥❣✳ ❳➨t ❜➔✐ t♦→♥✿ ❚➻♠ x ∈ D s❛♦ ❝❤♦ f (x, x) ≥ 0, ∀x ∈ D ❇➔✐ t♦→♥ ♥➔② ✤÷đ❝ ❣å✐ ❧➔ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✳ ❈❤➼♥❤ ①→❝✱ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤÷đ❝ ✤÷❛ r❛ ❧➛♥ ✤➛✉ ❜ð✐ ❍✳ ◆✐❦❛✐❞♦ ✈➔ ❑✳ ■s♦❞❛ ♥➠♠ ✶✾✺✺ ❦❤✐ tê♥❣ q✉→t ❤â❛ ❜➔✐ t♦→♥ ❝➙♥ ◆❛s❤ tr♦♥❣ trá ỡ ổ ủ t ữủ ợ t❤✐➺✉ ♥➠♠ ✶✾✼✷ ✭t❤÷í♥❣ ✤÷đ❝ ❣å✐ ❧➔ ❜➜t ✤➥♥❣ t❤ù❝ ❑② ❋❛♥✮✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❜❛♦ ❤➔♠ ♥❤✐➲✉ ❧ỵ♣ ❜➔✐ t♦→♥ q✉❡♥ t❤✉ë❝ ♥❤÷ ❜➔✐ t♦→♥ tè✐ ÷✉✱ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ ✤✐➸♠ ❜➜t t s tr ỵ tt trỏ ❝❤ì✐ ❦❤ỉ♥❣ ❤đ♣ t→❝ ✳✳✳ ❱➻ ✈➟②✱ ❝→❝ ❦➳t q✉↔ t❤✉ ✤÷đ❝ ✈➲ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤÷đ❝ →♣ ❞ư♥❣ trü❝ t✐➳♣ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ ✤➦❝ ❜✐➺t ❝õ❛ ♥â✳ ữợ ự t rt ❞↕♥❣✱ tr♦♥❣ ✤â ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ①➙② ❞ü♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ✤➣ ✤÷❛ t♦→♥ ❤å❝ ✈➔♦ ❣✐↔✐ q✉②➳t ♥❤✐➲✉ ✈➜♥ ✤➲ ✤➦t r❛ tr♦♥❣ t❤ü❝ t➳✳ P❤➛♥ trå♥❣ t➙♠ ❝õ❛ ❧✉➟♥ ✈➠♥ ♥➔② ❧➔ tr➻♥❤ ❜➔② ♠ët ♣❤÷ì♥❣ ♣❤→♣ ❝❤✐➳✉ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉ ✈➔ →♣ ❞ư♥❣ ✈➔♦ ❧ỵ♣ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❤❛✐ ❝➜♣✳ trú ỗ ữỡ ữỡ tự ỡ t ỗ ữủ sỷ tr ữỡ s t ợ t❤✐➺✉ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✱ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ t÷ì♥❣ ✤÷ì♥❣ ✈➔ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❤❛✐ ❝➜♣✳ ❈❤÷ì♥❣ ✷✿ ❚r➻♥❤ ❜➔② t❤✉➟t t♦→♥ ❝❤✐➳✉ ❣✐↔✐ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❣✐↔ ✤ì♥ ✤✐➺✉✱ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉ ✈➔ →♣ ❞ư♥❣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❤❛✐ ❝➜♣✳ ✷✳ ▼ö❝ ✤➼❝❤ ♥❣❤✐➯♥ ❝ù✉ ▼ö❝ ✤➼❝❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ❧➔ ①➙② ❞ü♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉ ✈➔ →♣ ❞ư♥❣ ✈➔♦ ♠ët ❧ỵ♣ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❤❛✐ ❝➜♣✳ ✷ ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝â xk+1 − x∗ = PC (uk − λk G(uk )) − PC (x∗ ) ≤ uk − λk G(uk ) − x∗ uk − λk G(uk ) − (x∗ − λk G(x∗ )) + λk G(x∗ ) = = (1 − L2 λβk )(uk − x∗ ) − L2 λβk [( Lβ2 G − I)uk − ( Lβ2 G − I)x∗ ] + λk G(x∗ ) ≤ (1 − L2 λk λk ) uk − x∗ + L2 Tk + λk G(x∗ ) , β β ✭✷✳✹✽✮ ✈ỵ✐ Tk = ( Lβ2 G − I)uk − ( Lβ2 G − I)x∗ ❉♦ t♦→♥ tû G ❧➔ ▲✐♣❝❤✐t③ ✈ỵ✐ ❤➺ sè L ✈➔ ✤ì♥ ✤✐➺✉ ♠↕♥❤ ✈ỵ✐ ❤➺ sè β ♥➯♥ t❛ ❝â β β k G − I)u − ( G − I)x∗ 2 L L β β = G(uk ) − G(x∗ ) − 2 G(uk ) − G(x∗ ), uk − x∗ + uk − x∗ L L 2 β β ≤ uk − x∗ − 2 uk − x∗ + uk − x∗ L L β ≤ (1 − ) uk − x∗ , L Tk2 = ( ❞♦ ✤â Tk ≤ 1− β2 L2 uk − x∗ ❑➳t ❤đ♣ ✈ỵ✐ ✭✷✳✹✽✮✱ t❛ ❝â λk β2 (1 − − )) uk − x∗ + λk G(x∗ ) β L λk ≤ (1 − L2 γ) uk − x∗ + λk G(x∗ ) ✭✷✳✹✾✮ β β = (1 − γk ) uk − x∗ + γk G(x∗ ) , Lγ xk+1 − x∗ ≤ (1 − L2 ✈ỵ✐ γ = − 1− β2 L2 ✈➔ γk = L2 λβk γ ∈ (0; 1) ✺✼ ❚ø ✭✷✳✹✻✮ ✈➔ ✭✷✳✹✾✮ t❛ s✉② r❛ xk+1 − x∗ ≤ (1 − γk ) xk − x∗ + γk β G(x∗ ) Lγ ❇➡♥❣ q✉② ♥↕♣ t❛ ♥❤➟♥ ✤÷đ❝ xk+1 − x∗ ≤ max max xk − x∗ , x0 − x∗ , β G(x∗ ) Lγ β G(x∗ ) Lγ ≤ ≤ ❚ø ✤➙② s✉② r❛ ❞➣② xk ❜à ❝❤➦♥✱ tø ✭✷✳✹✻✮ t❛ ❝â ❞➣② uk ❝ô♥❣ ❜à ❝❤➦♥✳ ❇ê ✤➲ ỗ t ởt xki xk tư ✈➲ ♠ët ✤✐➸♠ x ∈ C ✱ ❤ì♥ ♥ú❛ ❝→❝ ❞➣② y ki ✱ z ki ✈➔ ω ki ✤➲✉ ❜à ❝❤➦♥✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ❇ê ✤➲ 2.3.9 t❛ ❝â ❞➣② xk ❜à ❝❤➦♥✱ ✈➻ C ❧➔ t➟♣ ✤â♥❣ tỗ t xki xk tử ✈➲ ♠ët ✤✐➸♠ x ∈ C ✳ ❚❛ s➩ ❝❤➾ r tỗ t số M > s xki − y ki ≤ M ✈ỵ✐ ♠å✐ ❝❤➾ sè i ợ t tứ t ỗ ❤➔♠ fki (.) = ρf (xki , ) + h(.) − h(xki ) − h(xki ), − xki , ♥➯♥ ✈ỵ✐ ♠é✐ s(xki ) ∈ ∂fki (xki ) ✈➔ s(y ki ) ∈ ∂fki (y ki ) t❛ ❝â s(xki ) − s(y ki ), xki − y ki ≥ δ xki − y ki , s✉② r❛ s(xki ), xki − y ki ≥ s(y ki ), xki − y ki + δ xki − y ki ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ y ki ✱ y ki = argmin {fki (y) : y ∈ C} , ♥➯♥ t❛ ❝â ∈ ∂fki (y ki ) + NC (y ki ), ✺✽ ✭✷✳✺✵✮ tù❝ ❧➔ s(y ki ) ∈ −NC (y ki )✱ ✤✐➲✉ ♥➔② t÷ì♥❣ ✤÷ì♥❣ ✈ỵ✐ s(y ki ), y − y ki ≥ 0, ∀y ∈ C, ✤➦❝ ❜✐➺t s(y ki ), xki − y ki ≥ ❑➳t ❤đ♣ ✤✐➲✉ ♥➔② ✈ỵ✐ ✭✷✳✺✵✮ t❛ ✤÷đ❝ s(xki ), xki − y ki ≥ δ xki − y ki ❚ø ✤➙② s✉② r❛ xki − y ki ≤ √ s(xki ) , ∀s(xki ) ∈ ∂fki (xki ) δ ✭✷✳✺✶✮ ❇ð✐ ✈➻ xki → x ✈➔ ❞➣② {fki } ❤ë✐ tö ✤✐➸♠ tr➯♥ C ✈➲ ❤➔♠ f ✈ỵ✐ f (y) = ρf (x, y) + h(y) − h(x) − h(x), y − x , t ỵ 1.1.14 t s r tỗ t số io > ợ s ❝❤♦ ∂fki (xki ) ⊂ ∂f (x) + B[0; 1], ∀i > io , ✭✷✳✺✷✮ ✈ỵ✐ B[0; 1] ❧➔ ❤➻♥❤ ❝➛✉ ✤ì♥ ✈à ✤â♥❣ ❝â t➙♠ t↕✐ ✈➔ ❜→♥ ❦➼♥❤ ❜➡♥❣ ✶ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Rn ✳ ▼➦t ❦❤→❝ t❛ ❝â ∂fki (xki ) = ρ∂2 f (xki , y ki ), ∀i ✈➔ ∂2 f (x) = ρ∂2 f (x, x), ♥➯♥ ✭✷✳✺✷✮ trð t❤➔♥❤ ∂2 f (xki , y ki ) ⊂ ∂2 f (x, x) + B[0; 1], ∀i > io ρ ✺✾ ✭✷✳✺✸✮ ❉♦ t➟♣ ∂2 f (x, x) ❜à ❝❤➦♥✱ ❦➳t ❤ñ♣ ✈ỵ✐ ✭✷✳✺✶✮ ✈➔ ✭✷✳✺✸✮ t❛ s✉② r❛ ❞➣② sè xki − y ki ❜à ❝❤➦♥✳ ▼➔ ❞➣② xki ❜à ❝❤➦♥ ♥➯♥ s✉② r❛ ❞➣② y ki ❜à ❝❤➦♥✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ z ki , z ki = (1 − ηki ) xki + ηki y ki ✱ ♥➯♥ ❞➣② z ki ❝ơ♥❣ ❜à ❝❤➦♥✳ ❑❤ỉ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t ✱ t❛ ❣✐↔ sû z ki ❤ë✐ tö ✈➲ ✤✐➸♠ z ♥➔♦ ✤â✳ ❇ð✐ ✈➻ ω ki ∈ ∂2 f (z ki , z ki ) ♥➯♥ →♣ ❞ö♥❣ ✣à♥❤ ỵ 1.1.14 t s r ki ❇ê ✤➲ ✷✳✸✳✶✶✳ ◆➳✉ ❞➣② ❝♦♥ xki ⊂ xk ❤ë✐ tö ✈➲ ♠ët ✤✐➸♠ x ♥➔♦ ✤â ✈➔ xki − y ki ( ηki ) → ❦❤✐ i → ∞, ω ki ✭✷✳✺✹✮ t❤➻ x ∈ Sf ❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ①➨t ❤❛✐ tr÷í♥❣ ❤đ♣ ♣❤➙♥ ❜✐➺t✳ ❚r÷í♥❣ ❤đ♣ ✶✳ lim inf i→∞ ηki ω ki > 0✳ ❚ø ✭✷✳✺✹✮ t❛ s✉② r❛ lim xki − y ki = 0, i→∞ ❞♦ ✤â y ki → x ✈➔ z ki → x ❦❤✐ i → ∞✳ ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ y ki t❛ ❝â f (xki , y) + ≥ f (xki , y ki ) + ❉♦ f, h, h(y) − h(xki ) − ρ h(y ki ) − h(xki ) − ρ h(xki ), y − xki h(xki ), y ki − xki ≥ , ∀y ∈ C h ❧✐➯♥ tư❝✱ ❝❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ❦❤✐ i → ∞ t❛ ✤÷đ❝ f (x, y) + [h(y) − h(x) − ρ h(x), y − x ] ≥ 0, ∀y ∈ C, ✻✵ ✤✐➲✉ ♥➔② ❝â ♥❣❤➽❛ ❧➔ x ∈ Sf ηki ω ki ❚r÷í♥❣ ❤đ♣ ✷✳ lim inf i→∞ = 0✳ ❚r♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② ❞♦ ❞➣② ω ki ❜à ❝❤➦♥ t❛ ✤÷đ❝ lim ηki = 0, i→∞ ❞♦ ✤â z ki = (1 − ηki ) xki + y ki ηki → x ❦❤✐ i → ∞✳ ❑❤æ♥❣ ❣✐↔♠ t➼♥❤ tê♥❣ q✉→t✱ t❛ ❣✐↔ sû r➡♥❣ ω ki → ω ∈ ∂2 f (x, x) ✈➔ y ki → y ❦❤✐ i → ∞✳ ❚❛ ❝â f (xki , y) + ρ h(y) − h(xki ) − ≥ f (xki , y ki ) + h(xki ), y − xki h(y ki ) − h(xki ) − ρ ≥ h(xki ), y ki − xki , ∀y ∈ C ❈❤♦ i → ∞ t❛ t❤✉ ✤÷đ❝ f (x, y) + ρ1 [h(y) − h(x) − ≥ f (x, y) + h(x), y − x ] ≥ [h(y) − h(x) − ρ h(x), y − x ] ≥ 0, ∀y ∈ C ▼➦t ❦❤→❝ t❤❡♦ q✉② t➢❝ t➻♠ ❦✐➳♠ t❤❡♦ t✐❛ ❆r♠✐❥♦ ✭✷✳✹✸✮✱ ✈ỵ✐ sè mki tỗ t ki ,mki f (z ki ,mki −1 , z ki ,mki −1 ) s❛♦ ❝❤♦ ω ki ,mki −1 , xki − y ki < h(y ki ) − h(xki ) − ρ h(xki ), y ki − xki ✭✷✳✺✺✮ ❈❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ ❦❤✐ i → ∞ ✈➔ ❦➳t ❤đ♣ ✈ỵ✐ z ki ,mki −1 → x, ω ki ,mki −1 → ω ∈ ∂2 f (x, x)✱ tø ✭✷✳✺✺✮ t❛ t❤✉ ✤÷đ❝ ω, x − y ≤ [h(y) − h(x) − ρ h(x), y − x ] , ❞♦ ✤â ≤ ω, x − y + [h(y) − h(x) − ρ ✻✶ h(x), y − x ] ✣✐➲✉ ♥➔② ❞➝♥ ✤➳♥ f (x, y) + [h(y) − h(x) − ρ h(x), y − x ] ≥ ❱➻ ✈➟② f (x, y) + [h(y) − h(x) − ρ h(x), y − x ] ≥ 0, ∀y ∈ C ❚ù❝ ❧➔ x ∈ Sf ỵ sỷ t Sf ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ EP (C, f ) ❧➔ rộ ỗ ❧✐➯♥ tö❝ tr➯♥ Ω✱ ❞➣② {λk } ❧➔ ∞ k=0 λk ♠ët ❞➣② sè ❞÷ì♥❣ s❛♦ ❝❤♦ = ∞ ✈➔ ∞ k=0 λk < ∞✳ ❙♦♥❣ ❤➔♠ f t❤ä❛ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✭✶✮✱✭✷✮✱✭✸✮✱ t♦→♥ tû G ❧➔ L−▲✐♣❝❤✐t③ ✈➔ ✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ C ✳ ❑❤✐ ✤â ❞➣② {xk } s✐♥❤ ❜ð✐ ❚❤✉➟t t♦→♥ ✷✳✺ ❤ë✐ tö ✈➲ ♥❣❤✐➺♠ ❞✉② ♥❤➜t x∗ ❝õ❛ ❜➔✐ t♦→♥ V IEP (C, f, G)✳ ❈❤ù♥❣ ♠✐♥❤✳ ❚❤❡♦ ❇ê ✤➲ 2.3.8 t❛ ❝â k+1 x ∗ −x k ∗ − x −x k k − u −x ηk δ ρ ωk + xk − y k ≤ −2λk uk − x∗ , G(uk ) + λ2k G(uk ) , ∀k ✭✷✳✺✻✮ ❚ø ❇ê ✤➲ 2.3.9 ✈➔ t➼♥❤ ▲✐♣❝❤✐t③ ❝õ❛ t♦→♥ tû G✱ t❛ s✉② r❛ ❝→❝ ❞➣② xk ✱ uk ✈➔ G(uk ) ❜à ❝❤➦♥✱ ❞♦ ✤â tỗ t số ữỡ s uk − x∗ , G(uk ) ≤ A, G(uk ) ≤ B, ∀k ✣➦t ak = xk − x∗ ✱ ❦➳t ❤đ♣ ✈ỵ✐ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥✱ ✭✷✳✺✻✮ trð t❤➔♥❤ ak+1 − ak + ηk δ ρ ωk xk − y k ✻✷ ≤ 2λk A + λ2k B ✭✷✳✺✼✮ ❚❛ ①➨t ❤❛✐ tr÷í♥❣ ❤đ♣ ♣❤➙♥ ❜✐➺t✳ rữớ ủ ỗ t số ko s ak ❧➔ ❞➣② ❣✐↔♠ ❦❤✐ k ≥ ko ✳ ❑❤✐ õ ak 0, k tỗ t ợ ❤↕♥ limk→∞ ak = a✱ ❧➜② ❣✐ỵ✐ ❤↕♥ ❤❛✐ ✈➳ ❝õ❛ ✭✷✳✺✼✮ t❛ ♥❤➟♥ ✤÷đ❝ lim k→∞ ηk δ ρ ωk xk − y k ✭✷✳✺✽✮ = ❚❤➯♠ ✈➔♦ ✤â xk+1 − uk = PC uk − λk G(uk ) − PC (uk ) ≤ uk − λk G(uk ) − uk ✭✷✳✺✾✮ = λk G(uk ) → ❦❤✐ k → ∞ ❚ø ✤➙② s✉② r❛ limk→∞ uk − x∗ = limk→∞ xk+1 − x∗ = a✳ ❉♦ uk ❜à ❝❤➦♥✱ tỗ t uki uk s uki → u ∈ C ✈➔ lim inf uk − x∗ , G(u∗ ) = limk→∞ uki − x∗ , G(u∗ ) ❑➳t ❤đ♣ ✤✐➲✉ ♥➔② ✈ỵ✐ ✭✷✳✺✽✮✱✭✷✳✺✾✮ t❛ t❤✉ ✤÷đ❝ ki +1 x → u ✈➔ ηki +1 δ ρ ω ki +1 xki +1 − y ki +1 → ❦❤✐ i → ∞✳ ❚❤❡♦ ❇ê ✤➲ 2.3.11✱ t❛ ❝â u ∈ Sf ✳ ❉♦ ✤â lim inf uk − x∗ , G(u∗ ) = lim uki − x∗ , G(u∗ ) = u − x∗ , G(u∗ ) ≥ k→∞ k→∞ ❇ð✐ ✈➻ G ❧➔ β ✲ ✤ì♥ ✤✐➺✉ ♠↕♥❤✱ ♥➯♥ uk − x∗ , G(uk ) = uk − x∗ , G(uk ) − G(u∗ ) + uk − x∗ , G(u∗ ) ≥ β uk − x∗ + uk − x∗ , G(u∗ ) ✻✸ ❈❤✉②➸♥ q✉❛ ❣✐ỵ✐ ❤↕♥ ❦❤✐ k → ∞ ✈➔ ✈➻ limk→∞ uk − x∗ = a✱ t❛ t❤✉ ✤÷đ❝ lim inf uk − x∗ , G(u∗ ) ≥ βa ✭✷✳✻✵✮ k→∞ ◆➳✉ a > 0✱ ❜➡♥❣ ❝→❝❤ ❝❤å♥ = 12 βa✱ t❤➻ tø t s r tỗ t ko > s ❝❤♦ uk − x∗ , G(u∗ ) ≥ βa, ∀k ≥ ko ❉♦ ✭✷✳✺✻✮✱ t❛ ❝â ak+1 − ak ≤ −λk βa + λ2k B, ∀k ≥ ko ▲➜② tê♥❣ ❧✐➯♥ t✐➳♣ tø ko ✤➳♥ k t❛ t❤✉ ✤÷đ❝ k k ak+1 − ako ≤ − j=ko ▼➦t ❦❤→❝✱ ✈➻ ∞ k=0 λk = ∞ ✈➔ λ2j λj βa + B j=ko ∞ k=0 λk < ∞ ♥➯♥ t❛ s✉② r❛ lim inf k→∞ ak = −∞✳ ❚❛ ❣➦♣ ♠➙✉ t❤✉➝♥ ✈➻ ak ≥ 0, ∀k ✳ ❱➟② a = 0✱ tù❝ ❧➔✱ limk→∞ xk x = rữớ ủ ỗ t ❞➣② ❝♦♥ {aki }i≥0 ⊂ {ak }k≥0 s❛♦ ❝❤♦ aki < aki +1 ợ i r trữớ ❤đ♣ ♥➔②✱ t❛ ①➨t ❞➣② ❝❤➾ sè {σ(k)} ✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ tr♦♥❣ ❇ê ✤➲ 2.3.7✳ ❑❤✐ ✤â t❛ ❝â aσ(k)+1 − aσ(k) ≥ 0✱ ❦➳t ❤đ♣ ✤✐➲✉ ♥➔② ✈ỵ✐ ✭✷✳✺✼✮ ❞➝♥ ✤➳♥ ησ(k) δ ρ ω σ(k) xσ(k) − y σ(k) ≤ 2λσ(k) A + λ2σ(k) B ❉♦ ✤â lim k→∞ ησ(k) δ ρ ω σ(k) xσ(k) − y σ(k) ✻✹ = ❚ø t➼♥❤ ❜à ❝❤➦♥ ❝õ❛ xσ(k) ✱ ❦❤æ♥❣ ❣✐↔♠ t➼♥❤ tê♥❣ q✉→t✱ t❛ ❣✐↔ sû xσ(k) → x✳ ❚❤❡♦ ❇ê ✤➲ 2.3.11 t❛ ♥❤➟♥ ✤÷đ❝ x ∈ Sf ▼➦t ❦❤→❝✱ uσ(k) = PC∩Hσ(k) (xσ(k) ) = PCσ(k) (xσ(k) )✱ ♥➯♥ ❦➳t ❤đ♣ ✈ỵ✐ ✭✷✳✹✻✮ t❛ s✉② r❛ uσ(k) − x ≤ xσ(k) − x → ❦❤✐ k → ∞, ❞♦ ✤â limk→∞ uσ(k) = x✳ ❚ø ✭✷✳✺✻✮ t❛ ❝â σ(k) 2λσ(k) u ∗ σ(k) − x , G(u ) ≤ aσ(k) − aσ(k)+1 − + λ2σ(k) G(uσ(k) ) ησ(k) δ ρ ω σ(k) xσ(k) − y σ(k) ≤ λ2σ(k) B ❚ù❝ ❧➔ uσ(k) − x∗ , G(uσ(k) ) ≤ λσ(k) B ✭✷✳✻✶✮ ❱➻ G ❧➔ β−✤ì♥ ✤✐➺✉ ♠↕♥❤✱ ♥➯♥ β uσ(k) − x∗ ≤ uσ(k) − x∗ , G(uσ(k) ) − G(x∗ ) = uσ(k) − x∗ , G(uσ(k) ) − uσ(k) − x∗ , G(x∗ ) ❑➳t ❤đ♣ ✤✐➲✉ ♥➔② ✈ỵ✐ ✭✷✳✻✶✮✱ t❛ s✉② r❛ uσ(k) − x∗ λσ(k) B − uσ(k) − x∗ , G(uσ(k) ) β ≤ ❇ð✐ ✈➟② lim uσ(k) − x∗ k→∞ ≤− lim uσ(k) − x∗ , G(uσ(k) ) ≤ β k→∞ ✻✺ ❚ø ✤➙② s✉② r❛ lim uσ(k) − x∗ = k→∞ ✭✷✳✻✷✮ ❚❤➯♠ ✈➔♦ ✤â xσ(k)+1 − uσ(k) = PC (uσ(k) − λσ(k) G(uσ(k) )) − PC (uσ(k) ) ≤ λσ(k) G(uσ(k) ) , ❦❤✐ k → ∞ ❑➳t ❤đ♣ ✈ỵ✐ ✭✷✳✻✷✮✱ t❛ s✉② r❛ limk→∞ xσ(k) = x∗ ✱ tù❝ ❧➔ limk→∞ aσ(k)+1 = 0✳ ❚❤❡♦ ❇ê ✤➲ 2.3.7✱ t❛ ❝â ≤ ak ≤ aσ(k)+1 → ❦❤✐ k → ∞ ❉♦ ✤â xk ❤ë✐ tư tỵ✐ ♥❣❤✐➺♠ ❞✉② ♥❤➜t x∗ ❝õ❛ ❜➔✐ t♦→♥ V IEP (C, f, G)✳ ❚❛ ①➨t ♠ët tr÷í♥❣ ❤đ♣ r✐➯♥❣ q✉❛♥ trå♥❣ ❝õ❛ ❜➔✐ t♦→♥ V IEP (C, f, G) ❧➔ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❤❛✐ ❝➜♣ BV IP (C, F, G) s❛✉✿ ❚➻♠ ✤✐➸♠ x∗ ∈ SF s❛♦ ❝❤♦ G(x∗ ), y − x∗ ≥ 0, ∀y ∈ SF ✭✷✳✻✸✮ ð ✤â✱ SF ❧➔ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✿ ❚➻♠ ✤✐➸♠ u ∈ C s❛♦ ❝❤♦ F (u), y − u ≥ 0, ∀y ∈ C, ✭✷✳✻✹✮ tr♦♥❣ ✤â F : Ω −→ Rn ❧➔ t♦→♥ tû ①→❝ ✤à♥❤ tr➯♥ Ω✳ ❚r♦♥❣ tr÷í♥❣ ❤ñ♣ ♥➔②✱ ✤➦t f (x, y) = F (x), y − x t❤➻ ❜➔✐ t♦→♥ BV IP (C, F, G) trð t❤➔♥❤ ❜➔✐ t♦→♥ V IEP (C, f, G)✱ ❤➔♠ f ❧➔ ❣✐↔ ✤ì♥ ✤✐➺♥ t❤❡♦ t➟♣ S tr➯♥ C ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ t♦→♥ tû F ❧➔ ❣✐↔ ✤ì♥ ✤✐➺✉ t❤❡♦ S tr➯♥ C ✳ ✻✻ ❇➡♥❣ ❝→❝❤ ❝❤å♥ ❤➔♠ h(x) = x ✈➔ →♣ ❞ö♥❣ ❚❤✉➟t t♦→♥ ✷✳✺ ❝❤♦ ❜➔✐ t♦→♥ BV IP (C, F, G) t❛ ữủ t t s t t ữợ ❦❤ð✐ t↕♦✳ ❈❤å♥ x0 ∈ C ✈➔ ❝→❝ t❤❛♠ sè (0, 1), > ữợ tự õ xk t tỹ ữợ s ữợ y k = PC (xk F (xk )) ◆➳✉ xk = y k ❧➜② uk = xk s ữợ ữủ tỹ ữợ ữợ q t t t t ❆r♠✐❥♦✮✳ ❚➻♠ sè ♥❣✉②➯♥ ❞÷ì♥❣ mk ♥❤ä ♥❤➜t tr♦♥❣ ❝→❝ sè ♥❣✉②➯♥ ❞÷ì♥❣ m t❤ä❛ ♠➣♥✳    z k,m = (1 − η m )xk + η m y k ,    F (z k,m ), xk − y k ≥ ρ ✭✷✳✻✺✮ y k − xk ✣➦t ηk = η mk , z k = z k,mk ữợ uk = PCk (xk )✱ ✈ỵ✐ Ck = x ∈ C : F (z k ), x − z k ≤ ữợ t xk+1 = PC (uk k G(uk )) ữợ tự k ợ k ữủ t k + ỵ 2.3.12 t t t õ ❤➺ q✉↔ s❛✉ ✿ ❍➺ q✉↔ ✷✳✸✳✶✸✳ ●✐↔ sû t➟♣ ♥❣❤✐➺♠ SF ❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ V IP (C, F ) ❦❤→❝ ré♥❣✱ t♦→♥ tû F ❧✐➯♥ tư❝ tr➯♥ Ω✱ ❣✐↔ ✤ì♥ ✤✐➺✉ t❤❡♦ t➟♣ SF tr➯♥ C ✱ t♦→♥ tû G ❧➔ L−▲✐♣❝❤✐t③ ✈➔ β−✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ C ✱ ❞➣② {λk } ❧➔ ♠ët ❞➣② sè ❞÷ì♥❣ s❛♦ ❝❤♦ ∞ k=0 λk ✻✼ = ∞ ✈➔ ∞ k=0 λk < ∞✳ ❑❤✐ ✤â✱ ❞➣② xk s✐♥❤ ❜ð✐ ❚❤✉➟t t♦→♥ ✷✳✻ ❤ë✐ tö ✈➲ ♥❣❤✐➺♠ ❞✉② ♥❤➜t x∗ ❝õ❛ ❜➔✐ t♦→♥ BV IP (C, F, G)✳ ✻✽ ❑➳t ❧✉➟♥ ▲✉➟♥ ✈➠♥ ♥➔② ✤➣ tr➻♥❤ ❜➔② ❝→❝ ✈➜♥ ✤➲ ❝❤➼♥❤ s❛✉✿ ✶✳ ❈→❝ ❦✐➳♥ t❤ù❝ ỡ t ỗ ởt số ỵ sỹ tỗ t t ❜➡♥❣✳ ✷✳ ❚❤✉➟t t♦→♥ ❝❤✐➳✉ ✈➔ ❝❤ù♥❣ ♠✐♥❤ sü ❤ë✐ tö ❝õ❛ ❞➣② ❧➦♣ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❣✐↔ ✤ì♥ ✤✐➺✉✳ ❚ê♥❣ q✉→t ❤ì♥✱ ❧✉➟♥ ✈➠♥ ❝á♥ tr➻♥❤ ❜➔② t❤✉➟t t♦→♥ ❝❤✐➳✉ ✈➔ ❝❤ù♥❣ ♠✐♥❤ sü ❤ë✐ tö ❝õ❛ ♥â ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉✳ ✸✳ ❚❤✉➟t t♦→♥ ✈➔ ❝❤ù♥❣ ♠✐♥❤ sü ❤ë✐ tö ❝õ❛ ♥â ❝❤♦ ❜➔✐ t♦→♥ t➻♠ ❝ü❝ t✐➸✉ ❝õ❛ ❤➔♠ ❝❤✉➞♥ ❊✉❝❧✐❞❡ tr➯♥ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❣✐↔ ✤ì♥ ✤✐➺✉❀ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ỡ ỗ tớ ❜➔✐ t♦→♥ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ❤❛✐ ❝➜♣✳ ✻✾ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❚➔✐ ❧✐➺✉ t✐➳♥❣ ❱✐➺t ❬✶❪ ộ ữ P t ỗ ◆❳❇ ❑❤♦❛ ❤å❝ ✈➔ ❑ÿ t❤✉➟t ❍➔ ◆ë✐✳ ❬✷❪ ▲➯ ❉ơ♥❣ ▼÷✉✱ ◆❣✉②➵♥ ❱➠♥ ❍✐➲♥ ✭✷✵✵✾✮✱ ◆❤➟♣ ♠ỉ♥ ❣✐↔✐ t➼❝❤ ỗ ự tỹ ổ ◆❣❤➺✳ ❬✸❪ ◆❣✉②➵♥ ❳✉➙♥ ❚➜♥✱ ◆❣✉②➵♥ ❇→ ▼✐♥❤ ✭✷✵✶✵✮✱ ▼ët số tr ỵ tt tố ữ tr ◆❳❇ ●✐→♦ ❞ö❝✳ ❚➔✐ ❧✐➺✉ t✐➳♥❣ ❆♥❤ ❬✹❪ ❇✳ ❱✳ ❉✐♥❤✱ ▲✳ ❉✳ ▼✉✉ ✭✷✵✶✺✮✱ ✧❆ ♣r♦❥❡❝t✐♦♥ ❛❧❣♦r✐t❤♠ ❢♦r s♦✈✐♥❣ ♣s❡✉✕❞♦♠♦♥♦t♦♥❡ ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ❛♥❞ ✐t✬s ❛♣♣❧✐❝❛t✐♦♥ t♦ ❛ ❝❧❛ss ♦❢ ❜✐❧❡✈❡❧ ❡q✉✐❧✐❜r✐❛✧✱ ❖♣t✐♠✐③❛t✐♦♥✱ ✭✻✹✮✳♥♦✳✸✳✺✺✾✲✺✼✺✳ ❬✺❪ ❇✳ ❱✳ ❉✐♥❤✱ ✧❆♥ ❛❧❣♦r✐t❤♠ ❢♦r ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s ✇✐t❤ ♣s❡✉✲ ❞♦♠♦♥♦t♦♥❡ ❡q✉✐❧✐❜r✐✉♠ ❝♦♥str❛✐♥ts✧✱ s✉❜♠✐tt❡❞✳ ✼✵ ❬✻❪ ❋✳ ❋❛❝❝❤✐♥❡✐ ❛♥❞ ❏✳ ❙✳ P❛♥❣✭✷✵✵✸✮✱ ❋✐♥✐t❡✲ ❉✐♠❡♥s✐♦♥❛❧ ❱❛r✐❛t✐♦♥❛❧ ■♥✲ ❡q✉❛❧✐t✐❡s ❛♥❞ ❈♦♠♣❧❡♠❡♥t❛r✐t② Pr♦❜❧❡♠s✱ ❙♣r✐♥❣❡r✱ ◆❡✇ ②♦r❦✳ ❬✼❪ ●✳ ▼❛str♦❡♥✐ ✭✷✵✵✸✮✱ ❖♥ ❛✉①✐❧✐❛r② ♣r✐♥❝✐♣❧❡ ❢♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✱ ✐♥✿ P✳ ❉❛♥✐❡❧❡✱ ❋✳ ●✐❛♥♥❡ss✐✱ ❛♥❞ ❆✳ ▼❛✉❣❡r✐ ❊q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ❛♥❞ ❱❛r✐❛t✐♦♥❛❧ ▼♦❞❡❧s✱ ❑❧✉✇❡r ❆❝❛❞❡♠✐❝ P✉❜❧✐s❤❡rs✱ ❉♦r✕❞r❡❝❤t✳ ❬✽❪ ■✳ ❱✳ ❑♦♥♥♦✈✭✷✵✶✶✮✱ ❈♦♠❜✐♥❡❞ ❘❡❧❛①❛t✐♦♥ ▼❡t❤♦❞s ❢♦r ❱❛r✐❛✲ t✐♦♥❛❧ ■♥❡q✉❛❧✐t✐❡s✳ ❙♣r✐♥❣❡r✳ ❬✾❪ ❑✳ ❋❛♥ ✭✶✾✼✷✮✱ ❆♠✐♥✐♠❛① ✐♥❡q✉❛❧✐t② ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥✱ ✐♥ ✿❖✳ ❙❤✐s❤❛✱ ■♥✲ ❡q✉❛❧✐t② ■■■✱ Pr♦❝❡❡❞✐♥❣ ♦❢ t❤❡ ❚❤✐r❞ ❙②♠♣♦s✐✉♠ ♦♥ ■♥✲ ❡q✉❛❧✐t✐❡s✱ ❆❝❛✲ ❞❡♠✐❝ Pr❡ss✱ ◆❡✇ ❨♦r❦✳ ❬✶✵❪ ▲✳ ❉✳ ▼✉✉ ❛♥❞ ❲✳ ❖❡tt❧✐ ✭✶✾✾✷✮✱ ✧❈♦♥✈❡r❣❡♥❝❡ ♦❢ ❛♥ ❛❞❛♣t✐✈❡ ♣❡♥❛❧t② s❝❤❡♠❡ ❢♦r ❢✐♥❞✐♥❣ ❝♦♥str❛✐♥❡❞ ❡q✉✐❧✐❜r✐❛✧✱ ◆♦♥❧✐❡❛r ❆♥❛❧✳✱ ❚❤❡♦r② ▼❡t❤♦❞s ❆♣♣❧✳✱ ❙❡r✳ ❆✱ ✭✶✽✮✱ ✶✶✺✾✲✶✶✻✻✳ ❬✶✶❪ ▼✳ ❈❛st❡❧❧❛♥✐ ❛♥❞ ▼✳ ●✐✉❧✐✭✷✵✶✵✮✱ ✧❖♥ ❡q✉✐✈❛❧❡♥t ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜✲ ❧❡♠s✧✱ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✱ ✭✶✹✼✮✱ ✶✺✼✲✶✻✽✳ ❬✶✷❪ ▼✳ ❱✳ ❙♦❧♦❞♦✈ ❛♥❞ ❇✳ ❋✳ ❙✈❛✐t❡r ✭✶✾✾✾✮✱ ✧❆ ♥❡✇ ♣r♦❥❡❝t✐♦♥ ♠❡t❤♦❞s ❢♦r ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t② ♣r♦❜❧❡♠s✧✱ ❙■❆▼ ❏✳ ❈♦♥tr♦❧✳ ❖♣t✐♠✱ ✭✸✼✮✱ ✼✻✺✲ ✼✼✻✳ ❬✶✸❪ P✳ ❊✳ ▼❛✐♥❣❡✭✷✵✵✽✮✱ ✧❙tr♦♥❣ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ♣r♦❥❡❝t❡❞ s✉❜❣r❛❞✐❡♥t ♠❡t❤♦❞s ❢♦r ♥♦♥s♠♦♦t❤ ❛♥❞ ♥♦♥str✐❝t❧② ❝♦♥✈❡① ♠✐♥✐♠✐③❛t✐♦♥✧✱ ❙❡t✕ ❱❛❧✉❡❞ ❆♥❛❧✱ ✭✶✻✮✱ ✽✽✾✕✾✶✷✳ ✼✶

Ngày đăng: 08/06/2021, 15:57

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan