17 chuyên đề bồi dưỡng học sinh giỏi toán 9

84 12 0
17 chuyên đề bồi dưỡng học sinh giỏi toán 9

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỒI DƯỠNG HỌC SINH GIỎI TOÁN CHUYÊN ĐỀ : ĐA THỨC B CÁC PHƯƠNG PHÁP VÀ BÀI TẬP: I TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ: * Định lí bổ sung: + Đa thức f(x) có nghiệm hữu tỉ có dạng p/q p ước hệ số tự do, q ước dương hệ số cao + Nếu f(x) có tổng hệ số f(x) có nhân tử x – + Nếu f(x) có tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ f(x) có nhân tử x + + Nếu a nghiệm nguyên f(x) f(1); f(- 1) khác f(1) f(-1) số a-1 a+1 nguyên Để nhanh chóng loại trừ nghiệm ước hệ số tự Ví dụ 1: 3x2 – 8x + Cách 1: Tách hạng tử thứ 3x2 – 8x + = 3x2 – 6x – 2x + = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách 2: Tách hạng tử thứ nhất: 3x2 – 8x + = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – + x)(2x – – x) = (x – 2)(3x – 2) Ví dụ 2: x3 – x2 - Ta nhân thấy nghiệm f(x) có x = 1; 2; 4 , có f(2) = nên x = nghiệm f(x) nên f(x) có nhân tử x – Do ta tách f(x) thành nhóm có xuất nhân tử x – Cách 1: x3 - x2 – =  x  2x    x  2x    2x    x  x    x(x  2)  2(x  2) =  x  2  x  x  2 Cách 2: x  x   x   x    x     x    (x  2)(x  2x  4)  (x  2)(x  2) =  x    x  2x    (x  2)   (x  2)(x  x  2) Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – Nhận xét: 1, 5 không nghiệm f(x), f(x) khơng có nghiệm ngun Nên f(x) có nghiệm nghiệm hữu tỉ Ta nhận thấy x = nghiệm f(x) f(x) có nhân tử 3x – Nên f(x) = 3x3 – 7x2 + 17x – = 3x  x  6x  2x  15x    3x  x    6x  2x   15x   = x (3x  1)  2x(3x  1)  5(3x  1)  (3x  1)(x  2x  5) Vì x  2x   (x  2x  1)   (x  1)   với x nên không phân tích thành nhân tử Ví dụ 4: x3 + 5x2 + 8x + Nhận xét: Tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ nên đa thức có nhân tử x + x3 + 5x2 + 8x + = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1) + 4(x + 1) = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2 Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + Tổng hệ số nên đa thức có nhân tử x – 1, chia f(x) cho (x – 1) ta có: x5 – 2x4 + 3x3 – 4x2 + = (x – 1)(x4 - x3 + x2 - x - 2) Vì x4 - x3 + x2 - x - khơng có nghiệm ngun khơng có nghiệm hữu tỉ nên khơng phân tích 6.Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x + 1996) = (x2 + x + 1)(x2 - x + 1) + 1996(x2 + x + 1)= (x2 + x + 1)(x2 - x + + 1996) = (x2 + x + 1)(x2 - x + 1997) Ví dụ 7: x2 - x - 2001.2002 = x2 - x - 2001.(2001 + 1) = x2 - x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002) II THÊM , BỚT CÙNG MỘT HẠNG TỬ: Thêm, bớt số hạng tử để xuất hiệu hai bình phương: a) Ví dụ 1: 4x4 + 81 = 4x4 + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2 = (2x2 + 9)2 – (6x)2 = (2x2 + + 6x)(2x2 + – 6x) = (2x2 + 6x + )(2x2 – 6x + 9) b) Ví dụ 2: x8 + 98x4 + = (x8 + 2x4 + ) + 96x4 = (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4 = (x4 + + 8x2)2 – 16x2(x4 + – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2 = (x4 + 8x2 + 1)2 - (4x3 – 4x )2 = (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1) Thêm, bớt số hạng tử để xuất nhân tử chung a) Ví dụ 1: x7 + x2 + = (x7 – x) + (x2 + x + ) = x(x6 – 1) + (x2 + x + ) = x(x3 - 1)(x3 + 1) + (x2 + x + ) = x(x – 1)(x2 + x + ) (x3 + 1) + (x2 + x + 1) = (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 – x4 + x2 - x + 1) b) Ví dụ 2: x7 + x5 + = (x7 – x ) + (x5 – x2 ) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + x2(x3 – 1) + (x2 + x + 1) = (x2 + x + 1)(x – 1)(x4 + x) + x2 (x – 1)(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)[(x5 – x4 + x2 – x) + (x3 – x2 ) + 1] = (x2 + x + 1)(x5 – x4 + x3 – x + 1) * Ghi nhớ: Các đa thức có dạng x3m + + x3n + + như: x7 + x2 + ; x7 + x5 + ; x8 + x4 + ; x5 + x + ; x8 + x + ; … có nhân tử chung x2 + x + III ĐẶT BIẾN PHỤ: Ví dụ 1: x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128 = (x2 + 10x) + (x2 + 10x + 24) + 128 Đặt x2 + 10x + 12 = y, đa thức có dạng (y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4) = ( x2 + 10x + )(x2 + 10x + 16 ) = (x + 2)(x + 8)( x2 + 10x + ) Ví dụ 2: A = x4 + 6x3 + 7x2 – 6x + Giả sử x  ta viết x4 + 6x3 + 7x2 – 6x + = x2 ( x2 + 6x + – Đặt x - 1 2 )+7] + ) = x [(x + ) + 6(x x x x x 1 = y x2 + = y2 + 2, x x A = x2(y2 + + 6y + 7) = x2(y + 3)2 = (xy + 3x)2 = [x(x - ) + 3x]2 = (x2 + 3x – 1)2 x * Chú ý: Ví dụ giải cách áp dụng đẳng thức sau: A = x4 + 6x3 + 7x2 – 6x + = x4 + (6x3 – 2x2 ) + (9x2 – 6x + ) = x4 + 2x2(3x – 1) + (3x – 1)2 = (x2 + 3x – 1)2 Ví dụ 3: A = (x  y  z )(x  y  z)  (xy  yz+zx) 2 2 2 2 =  (x  y  z )  2(xy  yz+zx)  (x  y  z )  (xy  yz+zx) Đặt x  y  z = a, xy + yz + zx = b ta có A = a(a + 2b) + b2 = a2 + 2ab + b2 = (a + b)2 = ( x  y  z + xy + yz + zx)2 Ví dụ 4: B = 2( x  y  z )  ( x  y  z )2  2( x  y  z )( x  y  z )  ( x  y  z )4 Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có: B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2 Ta lại có: a – b2 = - 2( x y  y z  z x ) b –c2 = - 2(xy + yz + zx) Do đó: B = - 4( x y  y z  z x ) + (xy + yz + zx)2  4x y  4y z  4z x  4x y  4y z  4z x  8x yz  8xy z  8xyz  8xyz(x  y  z) Ví dụ 5: (a  b  c)3  4(a  b3  c3 )  12abc Đặt a + b = m, a – b = n 4ab = m2 – n2 a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 + m2 - n ) Ta có: m3 + 3mn  4c3  3c(m - n ) = 3( - c3 +mc2 – mn2 + cn2) C = (m + c) – 4 = 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a + b) IV PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH: Ví dụ 1: x4 - 6x3 + 12x2 - 14x + Nhận xét: số  1,  không nghiệm đa thức, đa thức khơng có nghiệm ngun củng khơng có nghiệm hữu tỉ Như đa thức phân tích thành nhân tử phải có dạng (x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd a  c  6  ac  b  d  12 đồng đa thức với đa thức cho ta có:  ad  bc  14 bd  Xét bd = với b, d  Z, b  1, 3 với b = d = hệ điều kiện trở thành a  c  6 ac  8 2c  8 c  4     a  2 a  3c  14 ac  bd  Vậy: x4 - 6x3 + 12x2 - 14x + = (x2 - 2x + 3)(x2 - 4x + 1) Ví dụ 2: 2x4 - 3x3 - 7x2 + 6x + Nhận xét: đa thức có nghiệm x = nên có thừa số x - ta có: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + ax2 + bx + c)  a   3  b  2a  7 a   = 2x4 + (a - 4)x3 + (b - 2a)x2 + (c - 2b)x - 2c     b  5 c  2b   c  4  2c  Suy ra: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + x2 - 5x - 4) Ta lại có 2x3 + x2 - 5x - đa thức có tổng hệ số hạng tử bậc lẻ bậc chẵn nên có nhân tử x + nên 2x3 + x2 - 5x - = (x + 1)(2x2 - x - 4) Vậy: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(x + 1)(2x2 - x - 4) Ví dụ 3: 12x2 + 5x - 12y2 + 12y - 10xy - = (a x + by + 3)(cx + dy - 1) ac  12  bc  ad  10 a    c  = acx2 + (3c - a)x + bdy2 + (3d - b)y + (bc + ad)xy –  3c  a    bd  12  b  6  d  3d  b  12 2  12x + 5x - 12y + 12y - 10xy - = (4 x - 6y + 3)(3x + 2y - 1) BÀI TẬP: Phân tích đa thức sau thành nhân tử: 1) x3 - 7x + 10) 64x4 + y4 2) x - 9x + 6x + 16 11) a6 + a4 + a2b2 + b4 - b6 3) x - 6x - x + 30 12) x3 + 3xy + y3 - 4) 2x - x + 5x + 13) 4x4 + 4x3 + 5x2 + 2x + 5) 27x - 27x + 18x - 14) x + x + 2 6) x + 2xy + y - x - y - 12 7) (x + 2)(x +3)(x + 4)(x + 5) - 24 15) x 2+ 3x + 16) 3x + 22xy + 11x + 37y + 7y2 +10 8) 4x4 - 32x2 + 17) x4 - 8x + 63 9) 3(x4 + x2 + 1) - (x2 + x + 1)2 CHUYÊN ĐỀ - LUỸ THỪA BẬC N CỦA MỘT NHỊ THỨC B KIẾN THỨC VÀ BÀI TẬP VẬN DỤNG: I Một số đẳng thức tổng quát: an - bn = (a - b)(an - + an - b + an - b2 + … + abn - + bn - ) an + bn = (a + b) ( an - - an - 2b + an - 3b2 - … - abn - + bn - ) Nhị thức Niutơn: (a + b)n = an + C1n an - b + C2n an - b2 + …+ Cnn 1 ab n - + bn Trong đó: C nk  n(n - 1)(n - 2) [n - (k - 1)] : Tổ hợp chập k n phần tử 1.2.3 k II Cách xác định hệ số khai triển Niutơn: Cách 1: Dùng công thức C nk  n(n - 1)(n - 2) [n - (k - 1)] k! 7.6.5.4 7.6.5.4   35 4! 4.3.2.1 7! 7.6.5.4.3.2.1 n! với quy ước 0! =  C 74    35 Chú ý: a) C kn  n!(n - k) ! 4!.3! 4.3.2.1.3.2.1 7.6.5  35 b) Ta có: C kn = C kn - nên C 74  C 37  3! Chẳng hạn hệ số hạng tử a4b3 khai triển (a + b)7 C 74  Cách 2: Dùng tam giác Patxcan Đỉnh Dòng 1(n = 1) 1 Dòng 2(n = 1) Dòng 3(n = 3) 3 Dòng 4(n = 4) Dòng 5(n = 5) 10 10 Dòng 6(n = 6) 15 20 15 Trong tam giác này, hai cạnh bên gồm số 1; dòng k + thành lập từ dòng k (k  1), chẳng hạn dòng (n = 2) ta có = + 1, dịng (n = 3): = + 1, = + dòng (n = 4): = + 3, = + 3, = + 1, … Với n = thì: (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 Với n = thì: (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 Với n = thì: (a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2 b4 + 6ab5 + b6 Cách 3: Tìm hệ số hạng tử đứng sau theo hệ số hạng tử đứng trước: a) Hệ số hạng tử thứ b) Muốn có hệ số của hạng tử thứ k + 1, ta lấy hệ số hạng tử thứ k nhân với số mũ biến hạng tử thứ k chia cho k Chẳng hạn: (a + b)4 = a4 + 1.4 4.3 2 4.3.2 4.3.2 ab+ ab + ab3 + b 2.3 2.3.4 Chú ý rằng: hệ số khai triển Niutơn có tính đối xứng qua hạng tử đứng giữa, nghĩa hạng tử cách hai hạng tử đầu cuối có hệ số (a + b)n = an + nan -1b + n(n - 1) n - 2 n(n - 1) n a b + …+ ab 1.2 1.2 -2 + nan - 1bn - + bn III Ví dụ: Ví dụ 1: phân tích đa thức sau thành nhân tử a) A = (x + y)5 - x5 - y5 Cách 1: khai triển (x + y)5 rút gọn A A = (x + y)5 - x5 - y5 = ( x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5) - x5 - y5 = 5x4y + 10x3y2 + 10x2y3 + 5xy4 = 5xy(x3 + 2x2y + 2xy2 + y3) = 5xy [(x + y)(x2 - xy + y2) + 2xy(x + y)] = 5xy(x + y)(x2 + xy + y2) Cách 2: A = (x + y)5 - (x5 + y5) x5 + y5 chia hết cho x + y nên chia x5 + y5 cho x + y ta có: x5 + y5 = (x + y)(x4 - x3y + x2y2 - xy3 + y4) nên A có nhân tử chung (x + y), đặt (x + y) làm nhân tử chung, ta tìm nhân tử cịn lại b) B = (x + y)7 - x7 - y7 = (x7+7x6y +21x5y2 + 35x4y3 +35x3y4 +21x2y5 7xy6 + y7) - x7 - y7 = 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 = 7xy[(x5 + y5 ) + 3(x4y + xy4) + 5(x3y2 + x2y3 )] = 7xy {[(x + y)(x4 - x3y + x2y2 - xy3 + y4) ] + 3xy(x + y)(x2 - xy + y2) + 5x2y2(x + y)} = 7xy(x + y)[x4 - x3y + x2y2 - xy3 + y4 + 3xy(x2 + xy + y2) + 5x2y2 ] = 7xy(x + y)[x4 - x3y + x2y2 - xy3 + y4 + 3x3y - 3x2y2 + 3xy3 + 5x2y2 ] = 7xy(x + y)[(x4 + 2x2y2 + y4) + 2xy (x2 + y2) + x2y2 ] = 7xy(x + y)(x2 + xy + y2 )2 Ví dụ 2:Tìm tổng hệ số đa thức có sau khai triển a) (4x - 3)4 Cách 1: Theo cônh thức Niu tơn ta có: (4x - 3)4 = 4.(4x)3.3 + 6.(4x)2.32 - 4x 33 + 34 = 256x4 - 768x3 + 864x2 - 432x + 81 Tổng hệ số: 256 - 768 + 864 - 432 + 81 = b) Cách 2: Xét đẳng thức (4x - 3)4 = c0x4 + c1x3 + c2x2 + c3x + c4 Tổng hệ số: c0 + c1 + c2 + c3 + c4 Thay x = vào đẳng thức ta có: (4.1 - 3)4 = c0 + c1 + c2 + c3 + c4 Vậy: c0 + c1 + c2 + c3 + c4 = * Ghi chú: Tổng hệ số khai triển nhị thức, đa thức giá trị đa thức x = C BÀI TẬP: Bài 1: Phân tích thành nhân tử a) (a + b)3 - a3 - b3 b) (x + y)4 + x4 + y4 Bài 2: Tìm tổng hệ số có sau khai triển đa thức a) (5x - 2)5 b) (x2 + x - 2)2010 + (x2 - x + 1)2011 CHUYÊN ĐỀ - CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ NGUYÊN B.KIẾN THỨC VÀ CÁC BÀI TOÁN: I Dạng 1: Chứng minh quan hệ chia hết Kiến thức: * Để chứng minh A(n) chia hết cho số m ta phân tích A(n) thành nhân tử có nhân tử làm bội m, m hợp số ta lại phân tích thành nhân tử có đoi ngun tố nhau, chứng minh A(n) chia hết cho số * Chú ý: + Với k số nguyên liên tiếp củng tồn bội k + Khi chứng minh A(n) chia hết cho m ta xét trường hợp số dư chia A(n) cho m + Với số nguyên a, b số tự nhiên n thì: +) an - bn chia hết cho a - b (a  - b) +) (a + 1)n BS(a )+ +) a2n + + b2n + chia hết cho a + b 2.+Bài (a +tập: b)n = B(a) + bn +)(a - 1)2n B(a) + +) (a - 1)2n + B(a) - Các toán Bài 1: chứng minh a) 251 - chia hết cho b) 270 + 370 chia hết cho 13 c) 1719 + 1917 chi hết cho 18 d) 3663 - chia hết cho không chia hết cho 37 e) 24n -1 chia hết cho 15 với n N Giải a) 251 - = (23)17 -  23 - = b) 270 + 370 (22)35 + (32)35 = 435 + 935  + = 13 c) 1719 + 1917 = (1719 + 1) + (1917 - 1) 1719 +  17 + = 18 1917 -  19 - = 18 nên (1719 + 1) + (1917 - 1) hay 1719 + 1917  18 d) 3663 -  36 - = 35  3663 - = (3663 + 1) - chi cho 37 dư - e) 4n - = (24) n -  24 - = 15 Bài 2: chứng minh a) n5 - n chia hết cho 30 với n  N ; b) n4 -10n2 + chia hết cho 384 với n lẻ n Z c) 10n +18n -28 chia hết cho 27 với n N ; Giải: a) n5 - n = n(n4 - 1) = n(n - 1)(n + 1)(n2 + 1) = (n - 1).n.(n + 1)(n2 + 1) chia hết cho (n - 1).n.(n+1) tích ba số tự nhiên liên tiếp nên chia hết cho (*) Mặt khác n5 - n = n(n2 - 1)(n2 + 1) = n(n2 - 1).(n2 - + 5) = n(n2 - 1).(n2 - ) + 5n(n2 - 1) = (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1) Vì (n - 2)(n - 1)n(n + 1)(n + 2) tích số tự nhiên liên tiếp nên chia hết cho 5n(n2 - 1) chia hết cho Suy (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1) chia hết cho (**) Từ (*) (**) suy đpcm b) Đặt A = n4 -10n2 + = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3) Vì n lẻ nên đặt n = 2k + (k  Z) A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2)  A chia hết cho 16 (1) Và (k - 1).k.(k + 1).(k + 2) tích số nguyên liên tiếp nên A có chứa bội 2, 3, nên A bội 24 hay A chia hết cho 24 (2) Từ (1) (2) suy A chia hết cho 16 24 = 384 c) 10 n +18n -28 = ( 10 n - 9n - 1) + (27n - 27) + Ta có: 27n - 27  27 (1) + 10 n - 9n - = [( 9  + 1) - 9n - 1] = 9  - 9n = 9( 1  - n)  27 (2) n n n  1  - n  1  - n số có tổng chữ số chia hết cho n n Từ (1) (2) suy đpcm Bài 3: Chứng minh với số nguyên a a) a3 - a chia hết cho b) a7 - a chia hết cho Giải a) a3 - a = a(a2 - 1) = (a - 1) a (a + 1) tích ba số nguyên liên tiếp nên tồn số bội nên (a - 1) a (a + 1) chia hết cho b) ) a7 - a = a(a6 - 1) = a(a2 - 1)(a2 + a + 1)(a2 - a + 1) Nếu a = 7k (k  Z) a chia hết cho Nếu a = 7k + (k  Z) a2 - = 49k2 + 14k chia hết cho Nếu a = 7k + (k  Z) a2 + a + = 49k2 + 35k + chia hết cho Nếu a = 7k + (k  Z) a2 - a + = 49k2 + 35k + chia hết cho Trong trường hợp củng có thừa số chia hết cho Vậy: a7 - a chia hết cho Bài 4: Chứng minh A = 13 + 23 + 33 + + 1003 chia hết cho B = + + + + 100 Giải Ta có: B = (1 + 100) + (2 + 99) + + (50 + 51) = 101 50 Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 101 Ta có: A = (13 + 1003) + (23 + 993) + +(503 + 513) = (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 99 + 992) + + (50 + 51)(502 + 50 51 + 512) = 101(12 + 100 + 1002 + 22 + 99 + 992 + + 502 + 50 51 + 512) chia hết cho 101 (1) Lại có: A = (13 + 993) + (23 + 983) + + (503 + 1003) Mỗi số hạng ngoặc chia hết cho 50 nên A chia hết cho 50 (2) Từ (1) (2) suy A chia hết cho 101 50 nên A chi hết cho B Bài tập nhà Chứng minh rằng: a) a5 – a chia hết cho b) n3 + 6n2 + 8n chia hết cho 48 với n chẵn c) Cho a l số nguyên tố lớn Cmr a2 – chia hết cho 24 Ta coù  AGB  AEC  AE AC = AG AB  AB AE = AC AG (1) AF CG CG =   CGB  AFC  (vì CB = AD) AC CB AD  AF AD = AC CG (2) Cộng (5) (6) vế theo vế ta có: AB AE + AF AD = AC AG + AC CG  AB AE + AF AD = AC(AG + CG) = AC AC Vaäy: AB AE + AD AF = AC2 Bμi 4: MB CM = (1) BA CN CM AD = (2) CD// AM  CN DN MB AD =  MB.DN = BA.AD = a.a = a Từ (1) (2) suy BA DN b)  MBD  BDN có MBD = BDN = 1200 MB MB CM AD BD =  =  (Do ABCD hình thoi có A = 600 nên BD BA CN DN DN AB = BC = CD = DA)   MBD  BDN a) BC // AN  Suy M1 = B1  MBD  BKD có BDM = BDK M1 = B1 nên BKD = MBD = 1200 C©u 1: x  7x  Cho A  x2 1 a) Rút gọn A b) Tìm x để A = c) Tìm giá trị nguyên x để A có giá trị nguyên Câu 2: Giải phơng trình: (x + 1)2 = 4(x2 + 2x + 1) C©u 3: Cho a, b, c tho· m·n: 1 1 a b c abc Tính giá trị cđa biĨu thøc: A = (a3 + b3)(b3 + c3)(c3 + a3) C©u 4: Cho  ABC cã A  2B  4C  4 Chøng minh: 1   AB BC CA C©u 5: Cho  ABC cân A có BC = 2a, M l trung ®iĨm cđa BC LÊy D, E theo thø tù thuéc AB, AC cho: DME  B a) Chøng minh rằng: tích BD CE không đổi b) Chứng minh DM l tia phân giác góc BDE c) TÝnh chu vi cña  ADE nÕu  ABC lμ tam giác 69 Hớng dẫn Câu 3: Từ 1 1 1 1 a+ b a+ b     + + =0  + =0 a b c abc a b c a+ b+ c ab c(a + b + c) c(a + b + c) + ab = Û (a + b)(b + c)(c + a) = abc(a + b + c) Tõ ®ã suy : A = (a3 + b3)(b3 + c3)(c3 + a3) = ( a + b)(b + c)(c + a) B = C©u : VÏ tia CM (M  AB) cho ACM  CAM v CBM l tam giác cân (a + b) AB AB AM AB AM  AB BM      1 BC AC CM CM CM CM AB AB 1 (v× BM = CM)   1   BC AC AB BC CA  B 2 4   C 3 M C©u : a) Ta có DMC = DME + CME = B + BDM , maø DME = B (gt) nên CME = BDM , kết hợp với B = C (  ABC cân A) suy  BDM  CME (g.g) BD BM =  BD CE = BM CM = a không đổi CM CE DM BD DM BD b)  BDM  CME  =  = ME CM ME BM (do BM = CM)   DME  DBM (c.g.c)  MDE = BMD A E  I D H K B M hay DM tia phân giác BDE c) chứng minh tương tự ta có EM tia phân giác DEC kẻ MH  CE ,MI  DE, MK  DB MH = MI = MK   DKM =  DIM  DK =DI   EIM =  EHM  EI = EH Chu vi  AED laø PAED = AD + DE + EA = AK +AH = 2AH (Vì AH = AK)  ABC tam giác nên suy CH = MC a  2  AH = 1,5a  PAED = AH = 1,5 a = 3a đề - khảo sát chất lợng học sinh giái léc hμ(2009 - 2010) Câu : Giải phương trình : a) x 1 x    x  x  ( x  2) (  x ) b) 6x2 - x - = x2  y2  z2 Câu : Cho x + y + z = Rút gọn : ( y  z )  ( z  x)  ( x  y ) Câu : Chứng minh không tồn x thỏa mãn : a) 2x4 - 10x2 + 17 = b) x4 - x3 + 2x2 - x + = 70 A 3 C DB  ; DC Câu : Cho tam giác ABC, điểm D nằm cạnh BC cho điểm O nằm đoạn AD cho OA  Gọi K giao điểm BO AC OD Tính tỷ số AK : KC Câu : Cho tam giác ABC có góc nhọn, trực tâm H Một đường thẳng qua H cắt AB, AC thứ tự P Q cho HP = HQ Gọi M trung điểm BC Chứng minh tam giác MPQ cân M hướng dẫn giải Câu 2: Từ x + y + z =  x2 + y2 + z2 = - 2(xy + yz + zx) (1) Ta có: (x - y)2 + (y - z)2 + (z - x)2 = 2(x2 + y2 + z2 ) - 2(xy + yz + zx) (2) Từ (1) (2) suy ra: (x - y)2 + (y - z)2 + (z - x)2 = - 6(xy + yz + zx) (3) Thay (1) (3) vào biểu thức A ta có: A= - 2(xy + yz + zx)  - 6(xy + yz + zx) Câu 3: 17 25 ) =  2(x4 - x2 + ) + =0 2 9  2(x2 - )2 + = Vì 2(x2 - )2 + > với x nên không tồn x để 2 2 a) 2x4 - 10x2 + 17 =  2( x4 - 5x2 + 2x4 - 10x2 + 17 = b) x4 - x3 + 2x2 - x + =  (x2 + 1)(x2 - x + 1) = Vì vế phải ln dương với x nên không tồn x để x4 - x3 + 2x2 - x + = Câu 4: Từ D kẻ DM // BK áp dụng định lí Talét vào  AOK ta có: AK AO   (1) KM OD A KM CD Tương tự,  CKB thì:   (2) CK DB AK Nhân (1) với (2) vế theo vế ta có:  CK Câu Gọi giao điểm AH BC I Từ C kẻ CN // PQ (N  AB), Tứ giác CNPQ hình thang, có H trung điểm PQ, hai cạnh bên NP CQ đồng quy A nên K trung điểm CN  MK đường trung bình  BCN  MK // CN  MK // AB (1) H trực tâm  ABC nên CH  A B (2) Từ (1) (2) suy MK  CH  MK đường cao  CHK (3) 71 K M O B D C A N P H Q K B M I C Từ AH  BC  MC  HK  MI đường cao  CHK (4) Từ (3) (4) suy M trực tâm  CHK  MH  CN  MH  PQ  MPQ có MH vừa đường trung tuyến vừa đường cao nên cân M Đề - thi HSG Toán - cp huyn n2 n Câu 1: a) Tìm số nguyên m, n thoả mÃn m n b) Đặt A = n3 + 3n2 + 5n + Chøng minh r»ng A chia hÕt cho với giá nguyên dơng n c) Nếu a chia 13 d− vμ b chia 13 d− a2+b2 chia hết cho 13 Câu2 : Rút gän biĨu thøc: a) A= b) B = C©u 3: TÝnh tỉng: S = trÞ bc ca ab + + (a  b)(a  c) (b  c)(b  a) (c  a)(c  b)       1 1      x x : x       x  3  x  x    x x   1 + + + 1.3 5.7 + 2009.2011 C©u 4: Cho sè x, y, z, thoả mÃn điều kiện xyz = 2011 Chứng minh biểu thức sau không phụ thuộc vo biến x, y, z : 2011x y z   xy  2011x  2011 yz  y  2011 xz  z  69  x 67  x 65  x 63  x 61  x      5 1942 1944 1946 1948 1950 Câu 6: Cho ABC tam giác đều, gọi M lμ trung ®iĨm cđa BC Mét gãc xMy = 600 quay quanh điểm M cho cạnh Mx , My cắt cạnh AB v AC lần lợt D v E Chứng minh : Câu 5: Giải phơng trình: a) BD.CE= BC2 b) DM, EM lần lợt l tia phân giác BDE v CED c) Chu vi ADE không đổi Giải n2  n 1 1) a, Thùc hiÖn chia m =n+ n n Để m nguyên với n nguyªn n + lμ −íc cđa Hay n + 1; -1  Khi ®ã : n + =  n = Z ( t/m) n + = -1  n = -2  Z (t/m) Víi n =  m = Víi n = -2  m = - VËy b, A = n3 + 3n2 + 3n +1 + 2n +2 = (n+ 1) +2(n+1) = = n ( n +1) (n+ 2) + 3( n+1) Khi ®ã : 3(n+1)  n( n +1) (n+ 2) lμ tÝch cđa sè nguyªn dơng liên tiếp nên tồn số l bội cña c, a = 13k +2, b = 13q +3 a2 + b2 = ( 13k +2 )2 + ( 13q + 3) = = 13( 13k2 +4k +13 q2 + 4q +1)  13 2) a) A= bc ca ab =   (a  b)(a  c) (b  c)(a  b) (a  c)(b  c) 72 = (a  b)(a  c)(b  c) =1 (a  b)(a  c)(b  c) 2 2 1  1  1      b) Ta cã:  x   =  (x  )  3(x  )  ; x    x       x    x  x x  x x   x   2 1   1      Tö thøc:  x     x    =  (x  )  3(x  )  -  x   x  x  x x   x                 = 3 x   2  x3    3 x   x x x   1      1 MÉu thøc:  x    x  =  x     x   x x x x   Rót gän ta cã: B = 3( x  ) x 1 1 1 1 1005 (1       )  (1  ) 3 2009 2011 2011 2011 2011x y z xy.xz y z = 4)     2011  2011x  xy xyz  y  yz  z  zx xyz  x yz  xy xyz  y  yz  z  zx xy.xz z  z  xz + + = = kh«ng ®æi = xy ( xz  z  1)  z  zx  z  zx  z  zx 69  x   67  x   65  x   63  x   61  x  5)   1    1    1    1    1   x = 2011  1942   1944   1946   1948   1950  6) a,Chøng minh BMD CEM BC BC A V× BM = CM =  BD.CE = x b, Chøng minh BMD MED Tõ ®ã suy Dˆ  Dˆ , ®ã DM lμ tia phân giác góc BDE D 3) S = Chøng minh t−¬ng tù ta cã EM lμ tia phân giác góc CED c, Gọi H, I, K l hình chiếu M AB, DE, AC Chứng minh DH = DI, EI = EK Chu vi b»ng 2.AH Bi (4.0 điểm) Phân tích đa thøc sau thμnh nh©n tư a) x2 -7x + 12 b) x4 + 2011x2 + 2010x + 2011 c) (x2+ y2+1)4 - 17(x2+y2+1)2x2 + 16x4 Bμi (4.0 ®iĨm) Cho biÓu thøc : A = x4  5x2  x  10 x  a) Ruùt gọn A b) tìm x để A = c) Tìm giá trị A x  Bi (4.0điểm) : Giải phơng trình : 73 B M y E C 1 1    x  9x  20 x  11x  30 x  13x  42 18 2025  x 2046  x 2057  x 2068  x     10 b) 25 23 19 17 a) Bμi (2.®) Chøng minh : a5 - a chia hÕt cho 30 víi a  Z Bμi (4.0®iĨm) : Cho hình vuông ABCD có cạnh a Gọi E; F lần lợt l trung điểm cạnh AB, BC Gọi M ìa giao điểm CE v DF a) Chøng minh CE vu«ng gãc víi DF b) Chøng minh :  C M C E  = SABCD   CF   Bμi 2.0 ®iĨm) Cho tam gi¸c ABC cã chu vi b»ng 18 Trong BC l cạnh lớn nhát Đờng phân giác góc B cắt AC M cho N cho MA Đờng phân giác góc C cắt AB MC NA Tính cạnh tam giác ABC NB Đề thi HSG Câu 1: Tìm x biết: a) x2 – 4x + = 25 x  17 x  21 x    4 b) 1990 1986 1004 c) 4x – 12.2x + 32 = 1    x y z yz xz xy   Tính giá trị biểu thức: A  x  yz y  xz z  xy Câu 3: Cho biểu thức : Câu 2: Cho x, y, z đôi khác  10  x    x2      :   x       x x x x x     P =  a) Rút gọn p b) Tính giá trị biểu thức p x = c) Với giá trị x P = d) Tìm giá trị nguyên x để P có giá trị nguyên Câu : Cho tam giác ABC nhọn, đường cao AA’, BB’, CC’, H trực tâm HA' HB' HC'   a) Tính tổng AA' BB' CC' b) Gọi AI phân giác tam giác ABC; IM, IN thứ tự phân giác góc AIC góc AIB Chứng minh rằng: AN.BI.CM = BN.IC.AM (AB  BC  CA)  c) Chứng minh rằng: AA'2  BB'2  CC'2 Câu 5: 74 Qua trọng tâm G tam giác ABC , kẻ đường thẳng song song với AC , cắt AB BC M N Tính độ dài MN , biết AM + NC = 16 (cm) ; Chu vi tam giác ABC 75 (cm) Giải Câu a) Tính x = 7; x = -3 b) Tính x = 2007 c) 4x – 12.2x + 32 =  2x.2x – 4.2x – 8.2x + 4.8 = x x x x x  (2 – 4) – 8(2 – 4) =  (2 – 8)(2 – 4) = x x x x  (2 – )(2 –2 ) =  –2 = –2 = x x  = =  x = 3; x = Câu 2: xy  yz  xz 1   xy  yz  xz   yz = –xy–xz   0 xyz x y z x2+2yz = x2+yz–xy–xz = x(x–y)–z(x–y) = (x–y)(x–z) Tương tự: y2+2xz = (y–x)(y–z) ; z2+2xy = (z–x)(z–y) yz xz xy   Do đó: A  ( x  y)( x  z) ( y  x )( y  z) (z  x )(z  y) Tính A = Câu 3: x  2( x  2)  x  1  x  : : =     ( x  2)( x  2) x2 x2 2 x  ( x  2)( x  2) x  x   x   a) p =  b) Với x ≠ ; x ≠ ± biểu thức p xác định 3 nên x = x = 4 4 + Nếu x = p =  2 4  + Nếu x = - p = 11 2 13 ( thỏa mãn điều kiện x ) c) Với p = 7  x= 2 x /x/ = d) Để p có giá trị nguyên - x phải ước Từ ta có : x = ; x = ; Vậy để p nguyên lúc x = ; x = ; Câu 4: HA'.BC S HBC HA'   a) S ; AA' ABC AA'.BC A C’ H N M I B x B’ A’ C D 75 S HAB HC' SHAC HB'   ; S ABC CC' SABC BB' HA' HB' HC' SHBC SHAB SHAC      1 AA' BB' CC' SABC SABC SABC Tương tự: b) Áp dụng tính chất phân giác vào tam giác ABC, ABI, AIC: BI AB AN AI CM IC  ;  ;  IC AC NB BI MA AI BI AN CM AB AI IC AB IC   1 IC NB MA AC BI AI AC BI  BI AN.CM  BN.IC.AM c)Vẽ Cx  CC’ Gọi D điểm đối xứng A qua Cx -Chứng minh góc BAD vng, CD = AC, AD = 2CC’ - Xét điểm B, C, D ta có: BD  BC + CD -  BAD vuông A nên: AB2+AD2 = BD2 2  AB + AD  (BC+CD) AB2 + 4CC’2  (BC+AC)2 4CC’2  (BC+AC)2 – AB2 Tương tự: 4AA’2  (AB+AC)2 – BC2 4BB’2  (AB+BC)2 – AC2 -Chứng minh : 4(AA’2 + BB’2 + CC’2)  (AB+BC+AC)2 (AB  BC  CA) 4  AA'2  BB'2  CC'2 (Đẳng thức xảy  BC = AC, AC = AB, AB = BC  AB = AC =BC   ABC đều) Câu 5: A BG GK  ;  BK BK AM CN GK Do MN // AC nên    BC BK AB AM  NC  Mà AB  BC ta có : M K G AM + NC = 16 (cm) AB + BC = 75 – AC 16   AC = 27 (cm) 75  AC MN MN Ta lại có :     MN  18 (cm) 27 AC Do : 76 B N C CHUYÊN ĐỀ 16 – BẤT ĐẲNG THỨC PhÇn I : kiến thức cần lu ý A B  A  B  A  B  A  B  1-§inhnghÜa:  2-tÝnh chÊt + A>B  B  A + A>B vμ B >C  A > C + A>B  A + C >B + C + A>B vμ C > D  A +C > B + D + A>B vμ C >  A.C > B.C + A>B vμ C <  A.C < B.C + < A < B vμ < C < D  < A.C < B.D + A > B >  An > Bn n +A>B  An > Bn víi n lỴ + A > B  An > Bn víi n ch½n + m > n > vμ A >  A m > A n + m > n > vμ  1  A B - số bất đẳng thức + A  víi  A ( dÊu = x¶y A = ) + An  víi  A ( dÊu = x¶y A = ) + A  víi A (dÊu = x¶y A = ) + -A 0) + A  B  A  B ( dÊu = xảy A.B < 0) Phần II : số phơng pháp chứng minh bất đẳng thức 1) Phơng pháp 1: dùng định nghĩa Kiến thức : Để chøng minh A > B Ta chøng minh A – B > Lu ý dùng bất đẳng thức M  víi  M VÝ dơ  x, y, z chøng minh r»ng : a) x + y + z  xy+ yz + zx b) x + y + z  2xy – 2xz + 2yz Gi¶i: a) Ta xÐt hiÖu : x + y + z - xy – yz – zx = ( x + y + z - xy – yz – zx)  ( x  y )  ( x z )  ( y  z )   ®óng víi mäi x;y;z  R  V× (x-y)2  víix ; y DÊu b»ng x¶y x = y (x- z)2  víix ; z DÊu b»ng x¶y x = z (y- z)2  víi z; y DÊu b»ng x¶y z = y VËy x + y + z  xy+ yz + zx DÊu b»ng x¶y x = y =z = b)Ta xÐt hiÖu: x + y + z - ( 2xy – 2xz +2yz ) = x + y + z - 2xy +2xz –2yz = ( x – y + z)  ®óng víi mäi x;y;z R VËy x + y + z  2xy – 2xz + 2yz với x;y;z R Dấu xảy x + y = z VÝ dô 2: chøng minh r»ng : 77 a  b2  c2  a  b  c    3   a  b2  a  b  a)   ; b)   gi¶i a) Ta xÐt hiƯu   c) H·y tỉng qu¸t bμi to¸n 2 a  2ab  b a  b2  a  b  = a  b = 2a  2b  a  b  2ab    4   2 VËy a  b   a  b  DÊu b»ng x¶y a = b     = 14  a  b  0 a  b2  c2  a  b  c  2 b)Ta xÐt hiÖu:   =  a  b    b  c    c  a    3   a  b2  c2  a  b  c   VËy  DÊu b»ng x¶y a = b =c 3   a12  a 22   a 2n  a1  a   a n  c)Tỉng qu¸t:   n n   * Tãm lại bớc để chứng minh A B theo ®Þnh nghÜa B−íc 1: Ta xÐt hiƯu H = A - B Bớc 2:Biến đổi H = (C+D) H=(C+D) + +(E+F) B−íc 3: KÕt luËn A B 2) phơng pháp : Dùng phép biến đổi tơng đơng Lu ý: Ta biến đổi bất đẳng thức cần chứng minh tơng đơng với bất đẳng thức bất đẳng thức đà đợc chứng minh l ®óng VÝ dơ 1: Cho a, b, c, d,e lμ c¸c sè thùc chøng minh r»ng b2 a) a   ab b) a  b   ab  a  b c) a  b  c  d  e  a  b  c  d  e  Gi¶i: b2 2 a) a   ab  4a  b  4ab  4a  4a  b    2a  b   (B®t ny đúng) b2 Vởy a ab (dÊu b»ng x¶y 2a = b) 2 b) a  b   ab  a  b  2(a  b  1)  2(ab  a  b)  a  2ab  b  a  2a   b  2b    (a  b)  (a  1)  (b  1)  (lu«n ®óng) VËy a  b   ab  a  b DÊu b»ng x¶y a = b = c) a  b  c  d  e2  a  b  c  d  e    a  b  c  d  e   4a  b  c  d  e           a  4ab  4b  a  4ac  4c  a  4ad  4d  a  4ac  4c    a  2b    a  2c    a  2d    a  2c   2 2 VÝ dô 2: Chøng minh r»ng:  a10  b10  a  b    a  b8  a  b  Gi¶i: a 10  b10  a  b    a  b8  a  b   a12  a10 b  a b10  b12  a12  a b  a b8  b12 78      a b a  b  a b8 b  a   a2b2(a2-b2)(a6-b6)   a b (a -b ) (a + a b +b )  2 2 2 x y.z   VÝ dụ 4: cho ba số thực khác không x, y, z tháa m·n:     x  y  z  x y z Chøng minh r»ng : cã ®óng mét ba sè x,y,z lớn Giải: Xét (x-1)(y-1)(z-1) = xyz + (xy + yz + zx) + x + y + z - 1 x y z 1 x y z = (xyz - 1) + (x + y + z) - xyz(   ) = x + y + z - (   )  x y z (v×   < x+y+z theo gt)  sè x-1 , y-1 , z-1 âm ba sỗ-1 , y-1, z-1 l dơng Nếủ trờng hợp sau xảy x, y, z >1 x.y.z>1 Mâu thuẫn gt x.y.z =1 bắt buộc phải xảy trờng hợp tức l có ba số x ,y ,z l số lớn 3) Phơng pháp 3: dùng bất đẳng thức quen thuộc A) số bất đẳng thức hay dùng 1) Các bất đẳng thức phô: b) x  y  xy dÊu( = ) x = y = a) x  y  2xy a b 2 b a a  a  a   a n 2)Bất đẳng thức Cô sy: n c)  x  y   4xy d)  n a1a 2a a n Víi  3)Bất đẳng thức Bunhiacopski a 2 a 22   a 2n   x12  x 22   n2    a1x1  a x   a n x n  4) Bất đẳng thức Trê-b - sép: abc  A  B  C NÕu  aA  bB  cC a  b  c A  B  C  3  abc  A  B  C aA  bB  cC a  b  c A  B  C  3  abc DÊu b»ng x¶y  A  B  C NÕu  B) c¸c vÝ dơ vÝ dơ Cho a, b ,c l số không âm chứng minh (a+b) (b+c)(c+a) 8abc Giải: Dùng bất đẳng thức phô:  x  y   4xy  a  b   4ab ;  b  c   4bc ;  c  a   4ac 2 2   a  b   b  c   c  a   64a b 2c   8abc   (a + b)(b + c)(c + a) Tacã 2  8abc DÊu “=” x¶y a = b = c vÝ dô 2: Cho a > b > c > vμ a  b  c  chøng minh r»ng 79 a3 b3 c3    bc ac ab Do a,b,c đối xứng , giả sử a  b  c  a  b2  c2    a b c    b  c a  c a  b ¸p dụng BĐT Trê- b-sép ta có a b c a  b2  c2  a b c  2 a  b c    = = bc ac ab bc ac ab 2 a3 b3 c3 1    DÊu b»ng x¶y a = b = c = VËy bc ac ab vÝ dô 3: Cho a,b,c,d > vμ abcd =1 Chøng minh r»ng : a  b  c  d  a  b  c   b  c  d   d  c  a   10 Ta cã a  b  2ab ; c2  d  2cd Do abcd =1 nªn cd = 1 (dïng x   ) ab x Ta cã a  b  c2  2(ab  cd)  2(ab ) (1) ab Mặt khác: a  b  c   b  c  d   d  c  a  = (ab + cd) + (ac + bd) + (bc + ad)     1      ac     bc      ab   ac   bc  2 2  a  b  c  d  a  b  c   b  c  d   d  c  a   10 =  ab  vÝ dô 4: Chøng minh r»ng : a  b  c  ab bc ac Giải: Dùng bất đẳng thức Bunhiacopski XÐt cỈp sè (1,1,1) vμ (a,b,c) ta cã 12  12  12  (a  b  c )  1.a  1.b  1.c     a  b  c  a  b  c   ab  bc  ac   a  b  c  ab  bc  ac (®pcm) DÊu b»ng xảy a = b = c 4) Phơng ph¸p 4: dïng tÝnh chÊt cđa tû sè A KiÕn thức 1) Cho a, b ,c l số dơng th× a a ac a a ac  th×  b ) NÕu  th×  b b bc b b bc a c a ac c 2) NÕu b, d > th× tõ     b d b bd d a ) NÕu B C¸c vÝ dơ: vÝ dơ 1: Cho a, b, c, d > a b c d    2 abc bcd cda dab a a ad Theo tÝnh chÊt cđa tØ lƯ thøc ta cã 1  abc abc abcd a a Mặt khác : (2) abc abcd Chøng minh r»ng :1  80 (1) a a ad (3)   abcd abc abcd b b ba T−¬ng tù ta cã :   (4) abcd bcd abcd c c bc d d dc (5);     abcd cda abcd abcd dab abcd Tõ (1) vμ (2) ta cã (6) céng vÕ víi vÕ cđa (3); (4); (5); (6) ta cã 1 a b c d     (®pcm) abc bcd cd a d ab a b c vμ b,d > d a ab  cd c Chøng minh r»ng  2  b b d d a c ab cd ab ab  cd cd c a ab  cd c Gi¶i: Tõ      2     2  (®pcm) b d b d b b d d d b b d d vÝ dô : Cho:  vÝ dơ : Cho a;b;c;d lμ c¸c số nguyên dơng thỏa mÃn : a + b = c+d =1000 tìm giá trị lớn a b c d a c giải : Không tính tổng quát ta giả sử : b d a ab b a   ;  v× a + b = c + d c cd d c b a b  998    999 d c d a b 999 b, NÕu: b = 998 a =1 = Đạt giá trị lớn d = 1; c = 999 c d c d a, NÕu: b  998 th× a b  = 999 + a = d = 1; c = b = 999 c d 999 1 1     VÝ dơ : Víi mäi sè tù nhiªn n >1 chøng minh r»ng :  n 1 n  nn 1 víi k = 1,2,3, ,n-1 Ta cã   n  k n  n 2n n 1 1 1 Do ®ã:         n 1 n  2n 2n 2n 2n 1 1 VÝ dô 5: CMR: A =      với n ≥ kh«ng lμ sè tù nhiªn n 1 1 HD:  ;  ; 1.2 2.3 Vậy: giá trị lớn Ví dô 6: Cho a ,b ,c ,d > Chøng minh r»ng : 2 ab bc cd d a    3 abc bcd cd a d ab Gi¶i : Vì a ,b ,c ,d > nên ta cã: ab ab abd   abcd abc abcd b  c bc bca   abcd bcd abcd 81 (1) (2) da da dac   abcd dab a bcd (3) Cộng vế bất đẳng thức trªn ta cã : 2 ab bc cd da  abc bcd cda dab (đpcm) Phơng pháp 5:Dùng bất đẳng thức tam giác Lu ý: Nếu a;b;cl số đo ba cạnh tam giác : a; b; c > Vμ |b-c| < a < b+c ; |a-c| < b < a+c ; |a-b| < c < b+a VÝ dô1: Cho a; b; clμ số đo ba cạnh tam giác chứng minh a, a2 + b2 + c2 < 2(ab + bc + ac) b, abc > (a+b-c).(b+c-a).(c+a-b) Gi¶i 0  a  b  c a  a(b  c) a)Vì a,b,c l số đo cạnh tam giác nên ta có b a  c  b  b(a  c)   0  c  a  b  c  c(a  b) Céng tõng vÕ c¸c bất đẳng thức ta có a2 + b2 + c2 < 2(ab + bc + ac) b) Ta cã a > b - c   a  a  (b  c) > b > a - c   b  b  (c  a)2 > c > a - b   c2  c  (a  b)  2 Nh©n vÕ bất đẳng thức ta đợc: a b c2  a   b  c    b   c  a   c2   a  b    a b 2c   a  b  c   b  c  a   c  a  b   abc   a  b  c   b  c  a   c  a  b  2 VÝ dơ2: (®ỉi biÕn sè) a b c    (1) bc ca ab yzx zxy xyz Đặt x= b + c ; y= c + a ;z = a + b ta cã a = ; b= ;c= 2 yzx zxy xyz y z x z x y ta cã (1)       1   1  1  2x 2y 2z x x y y z z y x z x z y  (  )  (  )  (  )  lμ B®t ®óng? x y x z y z Cho a,b,c lμ ba cạnh tam giác Chứng minh Ví dơ 3: (®ỉi biÕn sè) 1    (1) a  2bc b  2ac c 2ab Giải: Đặt x = a  2bc ; y = b  2ac ; z = c2  2ab Ta cã x  y  z   a  b  c   Cho a, b, c > vμ a + b + c Theo bất đẳng thức Côsi ta cã: 82 x  y  z  3 xyz vμ 1 1     x y z xyz  1 1   9 x y z  x y z . 6) phơng pháp lμm tréi : Chøng minh B§T sau : 1 1     1.3 3.5 (2n  1).(2n  1)  1 b) 1.2  1.2.3   1.2.3 n  a) Gi¶i : a) Ta cã : 1  2k  1  (2k  1)  1       2n  1  2n  1 (2k  1).(2k  1)  2k  2k  Cho n chạy từ đến k Sau ®ã céng l¹i ta cã 1 1   (®pcm)     1   1.3 3.5 (2n  1).(2n  1)  2n   1 1 1 b) Ta cã :      1    1.2 1.2.3 1.2.3 n 1.2 1.2.3  n  1 n 1 1 1 <  1               (®pcm)  2 2 3  n 1 n  n Bμi tËp vÒ nhμ: 1) Chøng minh r»ng: x + y + z +3  (x + y + z) HD: Ta xÐt hiÖu: x + y + z +3 – 2( x+ y +z ) = x - 2x + + y -2y +1 + z -2z +1 2) Cho a ,b,c l số đo ba cạnh tam giác Chứng minh r»ng :  a aa 2a a a    vμ ) bc abc abc bc abc 1 1 Chøng minh r»ng 83 a b c   2 bc ca ab ... (23 )17 -  23 - = b) 270 + 370 (22)35 + (32)35 = 435 + 93 5  + = 13 c) 171 9 + 1 91 7 = (171 9 + 1) + (1 91 7 - 1) 171 9 +  17 + = 18 1 91 7 -  19 - = 18 nên (171 9 + 1) + (1 91 7 - 1) hay 171 9 + 1 91 7 ... M = 199 22 + 199 32 + 199 42 b) N = 199 22 + 199 32 + 199 42 + 199 52 c) P = + 91 00 + 94 100 + 199 4100 d) Q = 12 + 22 + + 1002 e) R = 13 + 23 + + 1003 Giải a) số 199 32, 199 42 chia cho dư 1, 199 22 chia... thấy 199 3 = BS + = 6k + 1, đó: 3 199 3 = 6k + = 3.(33)2k = 3(BS – 1)2k = 3(BS + 1) = BS + c) Ta thấy 199 5 chia hết cho 7, đó: 199 2 199 3 + 199 4 199 5 = (BS – 3) 199 3 + (BS – 1) 199 5 = BS – 3 199 3 + BS

Ngày đăng: 01/06/2021, 10:57

Tài liệu cùng người dùng

Tài liệu liên quan