Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 26 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
26
Dung lượng
1,39 MB
Nội dung
ĐỀ ÔN TẬP TỐT NGHIỆP LỚP 12 NĂM HỌC 2020-2021 Mơn: Tốn Thời gian làm bài: 90 phút; Câu Có cách chọn học sinh từ nhóm có học sinh? 2 A B A7 C C7 Câu Cho cấp số nhân A u2 6 un có u1 2 cơng bội q Số hạng u2 B u2 C u2 Câu Cho hàm số y f ( x ) có bảng biến thiên hình bên D D u2 18 Hàm số cho đồng biến khoảng khoảng đây? 0;1 D Câu 4.Cho hàm số y f ( x ) có đồ thị đường cong hình vẽ bên Hàm số f ( x) đạt cực đại điểm sau đây? A 4; � B �;0 C 1;3 A x 1 B x 2 C x D x Câu 5.Cho hàm số y f ( x) liên tục � với bảng xét dấu đạo hàm sau: Số điểm cực trị hàm số y f ( x) A B C D 2x y x đường thẳng: Câu Tiệm cận ngang đồ thị hàm số A x B y C x 2 D y 2 Câu 7.Đồ thị hàm số có dạng đường cong hình bên? y x O A y =- x + x - B y =- x + 3x +1 C y = x - x +1 Câu Số giao điểm đồ thị hàm số y x x x 12 trục hoànhlà A C B D y = x - 3x +1 D Câu Cho a số thực dương Tìm khẳng định khẳng định sau: 1 log a log a log 3a log a log a 3log a 3 A B C y log x Câu 10.Đạo hàm hàm số y� x A B y� Câu 11 Cho a số thực dương tùy ý, C y� x ln D y� 4 A a B a C a x 27 là: Câu 12 Nghiệm phương trình A x B x 4 C x log x Câu 13 Nghiệm phương trình A x B x 4 f x 3x2 x Câu 14 Họ nguyên hàm hàm số A F ( x ) x x x C B F ( x) x D x 1 x C D x 12 x2 x2 C F ( x ) x x C 2 C D f x sin x Câu 15 Họ nguyên hàm hàm số F x cos x C F x cos x C A B F x cos x C F x cos x C C D f x dx � Câu 16 Nếu A.14 g x dx 3 � B 4 Câu 17 Tích phân cos xdx � � dx �f x g x � � � C D a F ( x) x3 3ln x a ln x D log a 3log a D 2 1 A B Câu 18 Môđun số phức z 12 5i C 2 D 1 2 A 13 B 119 C 17 D z 3i Câu 19 Cho hai số phức z1 i Phần thực số phức z1 z2 A.1 B C D 2 Câu20 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z 1 2i điểm đây? Q 1; P 1; N 1; M 1; 2 A B C D Câu 21 Khối lăng trụ có diện tích đáy 24, chiều cao tích A 72 B 126 C 24 D Câu 22 Một khối chóp có đáy hình vuông cạnh chiều cao Thể tích khối chóp A B C 12 D Câu 23 Tính thể tích khối trụ có bán kính đáy a độ dài đường sinh a a3 B A a D a Câu 24 Một hình nón có độ dài đường sinh 3cm bán kính đáy cm Diện tích xung quanh hình nón 2 2 A 12 cm B 6 cm C 3 cm D 4 cm uuu r A 1;1; B 2;3; Câu 25 Trong không gian Oxyz , cho hai điểm , Vectơ AB có tọa độ 1; 2;3 3;5;1 1; 2;3 3; 4;1 A B C D 2 x 1 y z 3 Oxyz Câu 26 Trong không gian , mặt cầu có tâm bán kính I 1; 2; 3 R I 1; 2;3 R A , B , I 1; 2; 3 R I 1; 2;3 R C , D , M 2;1;1 Câu 27.Trong không gian Oxyz , đường thẳng qua điểm ? C 3 a �x t �x t �x t �x t � � � � �y t �y t �y t �y t �z t �z t �z t �z t A � B � C � D � Oxyz Câu 28.Trong không gian , vectơ vectơ pháp tuyến mặt phẳng vng góc với trục Oy ? r r r r i 1;0;0 j 0;1;0 k 0;0;1 h 1;1;1 A B C D Câu 29 Có 30 thẻ đánh số thứ tự từ đến 30 Chọn ngẫu nhiên thẻ Tính xác suất để thẻ chọn mang số chia hết cho B A C 10 D Câu 30 Hàm số sau nghịch biến �? A y x x B y x x C y 3x x 1 D y 2 x Câu 31 Cho hàm số y x x Gọi M , m giá trị lớn giá trị nhỏ hàm số đoạn 0; 2 Khẳng định sau đúng? A M m B M m 2 C M 2m 10 D M m 8 log x 1 �3 Câu 32 Tập nghiệm bất phương trình 2;2 � ; � 3; � C �; 2 � 2; � D 3;3 A B 1;3 Câu 33 Cho f , g hai hàm liên tục đoạn thoả mãn: � dx 10 �f x g x � � � A 3 � f x g x � dx � � � , B Tính C � dx �f x g x � � � D z2 z 2i , z2 i Tìm số phức liên hợp z số phức z1 Câu 34 Cho hai số phức 1 7 7 z i z i z i z i 5 10 10 5 10 10 A B C D SA ^ ( ABCD ) Câu 35 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a , SA = a (tham khảo hình ( SAC ) bên) Góc đường thẳng SB mặt phẳng z S A B A 30� D C B 75� C 60� D 45� Câu 36 Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, AB a, AD a 3; SA vng góc với mặt phẳng (ABCD) Khoảng cách từ điểm B đến mặt phẳng(SAC)bằng S A B D C 2a 3a a B C D A 2;1;1 B 0;3; 1 S Câu 37 Trong không gian với hệ toạ độ Oxyz , cho hai điểm , Mặt cầu đường kính AB có phương trình 2 x2 y z x 1 y z A B 2 2 x 1 y z 1 x 1 y z C D a A A 1;3; B 2;0;5 C 0; 2;1 Câu 38 Trong không gian với hệ trục Oxyz , cho tam giác ABC có , Phương ABC trình trung tuyến AM tam giác x 1 y z x 1 y z 2 4 4 A 2 B x y z 1 C x 1 y z D �3 � 19 f 3 f � � y f x f 0 �2 � đồ thị Câu 39 Cho hàm số đa thức có đạo hàm � Biết , y f� x hình vẽ hàm số Giá trị lớn hàm số A g x f x 2x2 39 B � 3� 2; � � đoạn � � C 29 D 2021; 2021 cho bất phương trình 10 x Câu 40 Có số nguyên y đoạn 1;100 với x thuộc khoảng A 2021 B 4026 C 2013 y log x 10 �10 11 log x 10 D 4036 3 sin x sin 3x � � � 5 � �f x dx f � � 1 f� x , x �� ; � f x 2sin x.cos x �6 � Khi Câu 41 Cho hàm số có �2 � A B C 2 D z 5i 13 Câu 42 Có số phức z thỏa mãn (1 i) z (2 i) z số ảo? A B C D Câu 43 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật có AB a , AD 2a , SA vng góc a SCD với đáy, khoảng cách từ A đến mặt phẳng Tính thể tích khối chóp theo a 15 a A 45 15 a B 15 a C 15 a D 45 Câu 44 Từ tơn dạng hình trịn với bán kính R 50cm , người thợ cần cắt tôn có dạng hình chữ nhật nội tiếp hình trịn Người thợ gị tơn hình chữ nhật thành hình trụ khơng đáy (như hình vẽ) Thể tích lớn khối trụ thu gần với kết đây? A 0, 28m 3 C 0, 29m D 0, 03m x 1 y 1 z x y 5 z d: d1 : 4 , Câu 45 Trong không gian Oxyz,cho đường thẳng x y 3 z d2 : Đường thẳng song song với d, đồng thời cắt d1 d có phương trình y z x y 1 z 1 x3 3 : : A B x9 y7 z 2 x y 1 z 1 : : C D Câu 46.Cho f x B 0, 02m hàm số bậc ba Hàm số f� x có đồ thị hình vẽ: f e x 1 x m Tìm tất giá trị thực tham số m để phương trình có hai nghiệm thực phân biệt m f 2 m f 2 1 m f 1 ln m f 1 ln A B C D x 2 m 3 x x3 x x m x 2 x 1 Câu 47 Phương trình 2 m � a; b Tính giá trị biểu thức T b a A T 36 B T 48 Câu 48 Đồ thị hàm số bậc ba y f ' x có nghiệm phân biệt C T 64 hình vẽ Biết f x 1;2 D T 72 7 max f x 12 , 1;2 16 A C 25 B 12 D z i z2 i z 2i 2 z ,z Câu 49.Cho hai số phức thỏa mãn Tìm giá trị nhỏ 11 z1 iz2 A B C 2 D S có tâm I 1; 2;3 có bán kính r Xét đường thẳng Câu 50 Trong không gian Oxyz,cho mặt cầu �x t � d : �y mt t �� �z m t P , Q hai mặt phẳng chứa d tiếp xúc với S lần � , m tham số thực Giả sử B 1; 0; lượt M , N Khi đoạn MN ngắn tính khoảng cách từ điểm đến đường thẳng d 237 273 A B C 21 D 21 ĐÁP ÁN CHI TIẾT Câu Có cách chọn học sinh từ nhóm có học sinh? 2 A B A7 C C7 Lời giải D Chọn C Mỗi cách chọn học sinh từ học sinh tổ hợp chập phần tử Số cách chọn học sinh học sinh là: C7 Câu Cho cấp số nhân un A u2 6 có u1 2 công bội q Số hạng u2 B u2 C u2 Lời giải D u2 18 ChọnA Ta có un1 un q Suy u2 u1.q 6 Vậy u2 6 Câu 3.Cho hàm số y f ( x ) có bảng biến thiên hình bên Hàm số cho đồng biến khoảng khoảng đây? A 4; � ChọnB B �;0 1;3 C Lời giải D 0;1 Theo ra, ta có: Hàm số đồng biến khoảng �;0 3; � Câu 4.Cho hàm số y f ( x ) có đồ thị đường cong hình vẽ bên Hàm số f ( x) đạt cực đại điểm sau đây? A x 1 B x 2 C x Lời giải D x Chọn A Nhìn vào đồ thị hàm số ta thấy hàm số đạt cực đại x 1 Câu 5.Cho hàm số y f ( x) liên tục � với bảng xét dấu đạo hàm sau: Số điểm cực trị hàm số y f ( x) A B C Lời giải D Chọn D Ta có y�đổi dấu qua x 3 qua x nên số điểm cực trị 2x y x đường thẳng: Câu Tiệm cận ngang đồ thị hàm số A x B y C x 2 D y 2 Lời giải Chọn B 2x 2x lim Ta có: x�� x x�� x Vậy y tiệm cận ngang đồ thị hàm số cho lim Câu 7.Đồ thị hàm số có dạng đường cong hình bên? y x O A y =- x + x - B y =- x + 3x +1 C y = x - x +1 Lời giải D y = x - 3x +1 Chọn D Đặc trưng đồ thị hàm bậc ba Loại đáp án A C Khi x � � y � �� a > nên chọn D Câu Số giao điểm đồ thị hàm số y x x x 12 trục hoànhlà A C B D Lời giải Chọn B Phương trình hoành độ giao điểm: x x x 12 � x Vậy có giao điểm Câu Cho a số thực dương Tìm khẳng định khẳng định sau: 1 log a log a log a log a log a 3log a 3 A B C D log a 3log a Lời giải Chọn D log a 3log a � A sai, D log 3a log loga � B, C sai Câu 10.Đạo hàm hàm số y log x ln y� y� x x A B x ln C Lời giải y� D y� Chọn C Ta có: (log x)� x ln Câu 11 Cho a số thực dương tùy ý, A a a B a C a Lời giải D a 3ln x Chọn A Ta có: a3 a x 27 là: Câu 12 Nghiệm phương trình A x B x 4 C x Lời giải D x 1 Chọn A x 3 27 � x � x Ta có Câu 13 Nghiệm phương trình A x log x x C Lời giải B x 4 D x 12 Chọn A log 3x � x � x Ta có Câu 14 Họ nguyên hàm hàm số C B F ( x ) x A F ( x) x x x C F ( x) x3 f x 3x2 x x2 C D F ( x) x3 x2 x C Lời giải Chọn D Ta có 3x x 1 dx x3 � Câu 15 Họ nguyên hàm hàm số x2 x C f x sin x F x cos x C F x cos x C A B F x cos x C F x cos x C C D Lời giải Chọn A Ta có sin xdx � cos x C 2 Câu 16.Nếu f x dx � A.14 g x dx 3 � B 4 � dx �f x g x � � � C Lời giải D Câu 22.Một khối chóp có đáy hình vng cạnh chiều cao Thể tích khối chóp A B C 12 D Lời giải Chọn D V 3.22 Ta có Câu 23 Tính thể tích khối trụ có bán kính đáy a độ dài đường sinh a A a a3 B 3 C 3 a D a Lời giải Chọn A 2 Ta có V R h a a a Câu 24.Một hình nón có độ dài đường sinh 3cm bán kính đáy cm Diện tích xung quanh hình nón 2 2 A 12 cm B 6 cm C 3 cm D 4 cm Lời giải Chọn B Diện tích xung quanh hình nón là: S xq rl 6 (cm ) uuu r A 1;1; B 2;3; Câu 25 Trong không gian Oxyz , cho hai điểm , Vectơ AB có tọa độ 1; 2;3 1; 2;3 3;5;1 3; 4;1 A B C D Lời giải Chọn A uuu r AB 1; 2;3 x 1 y z 3 có tâm bán kính Câu 26 Trong khơng gian Oxyz , mặt cầu 2 I 1; 2; 3 R , I 1; 2; 3 R C , I 1; 2;3 R , I 1; 2;3 R D , Lời giải A B Chọn C Mặt cầu x 1 y z 3 2 có tâm I 1; 2; 3 , bán kính R M 2;1;1 Câu 27.Trong không gian Oxyz , đường thẳng qua điểm ? �x t �x t �x t � � � �y t �y t �y t �z t �z t �z t A � B � C � D �x t � �y t �z t � Lời giải ChọnC Xét phương án A, B, C.Ta có t � t Thay t vào y, z ta thấy phương án C thỏa mãn Câu 28.Trong không gian Oxyz , vectơ vectơ pháp tuyến mặt phẳng vng góc với trục Oy ? r r r r k 0;0;1 h 1;1;1 i 1;0;0 j 0;1;0 A B C D Lời giải ChọnB r j 0;1;0 Vectơ vectơ phương trục Oy Do vectơ pháp tuyến mặt phẳng vng góc với trục Oy Câu 29 Có 30 thẻ đánh số thứ tự từ đến 30 Chọn ngẫu nhiên thẻ Tính xác suất để thẻ chọn mang số chia hết cho A B C 10 D Lời giải ChọnD Từ đến 30 có 10 số chia hết xác suất để chọn thẻ mang số chia hết cho 10 30 Câu 30 Hàm số sau nghịch biến �? A y x x B y x x C y 3x x 1 D y 2 x Lời giải Chọn B 3x 0, x ��nên hàm số đồng biến � Ta có: y x x � y� Câu 31 Cho hàm số y x x Gọi M , m giá trị lớn giá trị nhỏ hàm số đoạn 0; 2 Khẳng định sau đúng? A M m B M m 2 C M 2m 10 Lời giải ChọnC D � D M m 8 � x 1� 0; � y� � 3x � � x 1 � 0; � y� x2 y 4, y 2; y 1 6 Ta có Vậy M 2, m 6 log x �3 Câu 32.Tập nghiệm bất phương trình �; 3 � 3; � C �; 2 � 2; � D 3;3 2;2 A B Lời giải Chọn B Điều kiện: log x �� 1 3�� x 2�۳� 23 Kết hợp với điều kiện ta x2 x2 x �3 � � x �3 � x �3 � � x �3 � Vậy tập nghiệm bất phương trình �; 3 � 3; � 1;3 Câu 33 Cho f , g hai hàm liên tục đoạn thoả mãn: 3 dx 10 � f x g x � dx � � �f x g x � � � � � , B.6 Tính C Lời giải A dx � �f x g x � � � D Chọn B 3 1 3 1 dx 10 f x d x 3� g x dx 10 � �f x g x � � � � 1 � � f x g x � dx 2� f x dx � g x dx � � � 2 � X � f x dx Y � g x dx 1 Đặt , �X 3Y 10 �X � � 2X Y � � Y 2 Từ ta có hệ phương trình: � f x dx � Do ta được: g x dx � Vậy dx � �f x g x � � � Câu 34.Cho hai số phức z1 2i , z2 i Tìm số phức liên hợp z số phức z z2 z1 z i 5 A B z i 10 10 z i 5 C D z i 10 10 Lời giải Chọn C z Ta có z2 3i i�z i z1 2i 5 5 SA ^ ( ABCD ) Câu 35 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a , SA = a (tham khảo hình ( SAC ) bên) Góc đường thẳng SB mặt phẳng S A B A 30� B 75� D C C 60� Lời giải D 45� Chọn A Gọi I tâm hình vng ABCD SA ^ ( ABCD ) Vì ABCD hình vng nên BD ^ AC ; Vì nên SA ^ BD Suy Ta có: BD ^ ( SAC ) SB = a ; � ( SAC ) góc BSI , góc đường thẳng SB BI = a � = BI = � BSI � = 30� � sin BSI SB Câu 36.Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, AB a, AD a 3; SA vng góc với mặt phẳng (ABCD) Khoảng cách từ điểm B đến mặt phẳng(SAC)bằng S A D B C 2a B a A 3a C Lời giải a D Chọn D BH SAC Kẻ BH AC H Ta dễ dàng suy � d B, SAC BH Xét tam giác ABC vng B , ta có : 1 1 a � BH 2 2 BH AB BC a 3a 3a A 2;1;1 B 0;3; 1 S Câu 37 Trong không gian với hệ toạ độ Oxyz , cho hai điểm , Mặt cầu đường kính AB có phương trình x2 y z A x 1 C y z 1 2 x 1 B x 1 D y 2 z y 2 z 2 Lời giải Chọn B I 1; 2; Tâm I trung điểm AB � bán kính R IA Vậy x 1 y 2 z A 1;3; B 2;0;5 C 0; 2;1 Câu 38 Trong không gian với hệ trục Oxyz , cho tam giác ABC có , Phương trình trung tuyến AM tam giác ABC x 1 y z 2 4 A 2 x 1 y z 4 B x y z 1 C x 1 y z D Lời giải Chọn B Ta có: M 1; 1;3 ; uuuu r AM 2; 4;1 x 1 y z 4 Phương trình AM : y f x Câu 39.Cho hàm số đa thức có đạo hàm � Biết y f� x hình vẽ hàm số Giá trị lớn hàm số A g x f x 2x 39 B f 0 �3 � 19 f 3 f � � �2 � đồ thị , � 3� 2; � � � � đoạn C Lời giải 29 D Chọn D h x f x 2x2 Xét hàm số xác định � f x h x h f 2.0 Hàm số hàm đa thức nên hàm đa thức h�x f � x x � h� x � f ' x x Khi Dựa vào tương giao đồ thị hàm số y f� x đường thẳng y x , ta có 3� h� 3;0; � x � x �� � � Ta có bảng biến thiên sau: Từ ta có bảng biến thiên hàm số g x h x sau � � 29 2; � � g x Vậy giá trị lớn � � 2021; 2021 cho bất phương trình 10 x Câu 40 Có số nguyên y đoạn y log x 10 �10 11 log x 10 1;100 với x thuộc khoảng A 2021 B 4026 C 2013 Lời giải D 4036 Chọn A 10 x y log x 10 11 �1010 log x 11 11 � log x � � log x � � �y log 10 x � log x � �y log x � log x 1 � � 10 10 � 10 � � 10 � x � 1;100 � log x � 0; t � 0; Đặt log x t Ta có Bất phương trình trở thành t 10t 11 t 10t ۣ � t � t 1 � t � y t 1 � �y � 10 t 1 10 10 � 10 � Xét hàm số t 10t f t 10 t 1 0; , ta có khoảng f� t y 2 t 2t 10 10 t 1 � f t , t � 0; � f� t 0, t � 0; � f f t f , t � 0; 15 Yêu cầu toán � 2 với ۣ �f۳ t t � 0; ۣ y, t 0; y 15 �8 � y � 2021; 2021 � y �� ; 2021� 15 � � Vậy có tất 2021 giá trị nguyên y Kết hợp với điều kiện thỏa mãn yêu cầu toán 3 sin x sin 3x � 5 � � � f � � 1 f� , x �� ; � x f x 2sin x.cos x �6 � Khi Câu 41 Cho hàm số có �2 � A B C 2 D Lời giải �f x dx Chọn C Ta có f ' x sin x sin 3x � 5 � , x �� ; � 2sin x.cos x �6 �nên f x nguyên hàm f ' x sin x sin 3x 2sin x.cos x 2sin x.cos x cos x dx � dx � dx � dx 4 x.cos x 2sin x.cos x sin x sin x f� x dx � � 2sin 1 � d sin x C sin x sin x Do f x 3 3 4 �f x dx Vậy � � 1 f � � 1 � C C f x 2 sin x sin x mà �2 � 3 d x cot x 2 � sin x z 5i 13 Câu 42 Có số phức z thỏa mãn (1 i) z (2 i) z số ảo? A B C D Lời giải Chọn B Gọi z x yi ; M ( x; y ) điểm biểu diễn số phức z Khi (1 i) z (2 i ) z (1 i)( x yi) (2 i)( x yi) x y bi số ảo � 3x y Mặt khác z 5i 13 � ( x 1) ( y 5) 13 2 Như điểm M ( x; y ) vừa thuộc đường tròn (C ) : ( x 1) ( y 5) 13 có tâm I (1; 5) , bán kính R 13 ; vừa thuộc đường thẳng : 3x y d ( I ; ) Ta có 3.1 2.(5) (2) 2 13 13 R 13 Vậy tiếp xúc với đường tròn (C ) nên có số phức z thỏa mãn đề Câu 43 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật có AB a , AD 2a , SA vng góc a SCD với đáy, khoảng cách từ A đến mặt phẳng Tính thể tích khối chóp theo a 15 a A 45 15 a B 15 a C 15 Lời giải a D 45 Chọn A 1 Kẻ AH SD CD AD � � CD SA � CD SAD � CD AH Ta có � Từ 1 2 , a AH SCD � d A, SCD AH � AH ta có a � 2a a2 2a 15 4a 15 1 � SA AH AD AD AH SA2 AD Trong SAD ta có AH 1 2a 15 15 V SA AB AD � a.2a a 3 15 45 Vậy thể tích khối chóp S ABCD Câu 44.Từ tôn dạng hình trịn với bán kính R 50cm , người thợ cần cắt tơn có dạng hình chữ nhật nội tiếp hình trịn Người thợ gị tơn hình chữ nhật thành hình trụ khơng đáy (như hình vẽ) Thể tích lớn khối trụ thu gần với kết đây? A 0, 28m B 0, 02m C 0, 29m Lời giải D 0, 03m Chọn D Khối trụ thu tích V r h b � b h R 1m R 0,5m Gọi chiều dài hình chữ nhật Ta có 2r b � r b h2 h2 h h3 �V h f h 2 2 4 4 3 1 �1 � �1 � h � � � ��3h h � h h3 � 3 3 �3� �3� Lại có � V 4 3 6 0, 03m3 d: x 1 y 1 z x y 5 z d1 : 4 , Câu 45 Trong không gian Oxyz,cho đường thẳng x y 3 z d2 : Đường thẳng song song với d, đồng thời cắt d1 d có phương trình y z x y 1 z 1 x3 3 : : A B x9 y7 z 2 x y 1 z 1 : : 4 4 C D Lời giải Chọn A Giải: Gọi M, N giao điểm d1 , d �xM 3t �xN 2 2t ' � � �yM 1 t , �y N 4t ' �z 2t �z t ' M �N Khi M, N thuộc d1 , d nênuu� uu r MN 3 2t ' 3t; 4t ' t ; 2 t ' 2t Vector phương x4 y5 z2 3 2t ' 3t 4t ' t 2 t ' 2t d: 4 nên 4 song song với t ' 1; t Giải hệ ta x y 1 z 1 : 4 Vậy Câu 46.Cho f x 2� � N 4; 1; 1 , M � 3; ; � 3� � Vậy hàm số bậc ba Hàm số f� x có đồ thị hình vẽ: f e x 1 x m Tìm tất giá trị thực tham số m để phương trình có hai nghiệm thực phân biệt m f 2 m f 2 1 m f 1 ln m f 1 ln A B C D Lời giải Chọn A Ta có: f e x 1 x m � f e x 1 x m 1 x e x 0, x �� Ta có bảng biến thiên: Đặt t e � t � Với t e x � x ln t 1 Ta có: 1 � f t ln t 1 m Khi đó, phương trình cho có hai nghiệm thực phân biệt phương trình nghiệm thực phân biệt lớn Xét hàm số g t f t ln t 1 , t g� t f � t ta có: 1 , g� t � f � t t 1 t 1 2 có hai Dựa vào đồ thị hàm số y f� x Ta có bảng biến thiên hàm số Số nghiệm phương trình 2 g t 1 f� �t 2 t x ta có: t 1 y : số giao điểm đồ thị hàm số g t đường thẳng y m có hai nghiệm thực phân biệt lớn Dựa vào bảng biến thiên, phương trình � m g � m f ln1 � m f x 2 m 3 x x3 x x m x 2 x 1 Câu 47 Phương trình có nghiệm phân biệt 2 m � a; b Tính giá trị biểu thức T b a A T 36 B T 48 C T 64 D T 72 Lờigiải Chọn B 3 x 2 m 3 x x x x m x 2 x 1 � m3 x x m x 23 2 x Ta có: 3 � m 3 x m x 2 x x f t 2t t Xét hàm số � t f ' t ln 3t 0, t �� Ta có: Suy hàm số đồng biến � f m x f x � m 3x x � m 3x x Mà � m x3 x2 x y x3 x x Số nghiệm phương trình số giao điểm đồ thị hàm số đường thẳng y m g x x3 x x � x 1 � g ' x 3 x 12 x 9; g ' x � � x3 � Ta có: g x : Bảng biến thiên hàm số Xét hàm số Dựa vào bảng biến thiên hàm số a 4; b g x phương trình có nghiệm phân biệt m Suy 2 Vậy T b a 48 Câu 48.Đồ thị hàm số bậc ba 16 A y f ' x hình vẽ Biết C 25 B 12 f x 1;2 7 max f x 12 , 1;2 D Lời giải Chọn B [ 1; 2] � f x f ( 1); f (2) ( x ) � xét dấu f � ( x) lập BBT f(x) 1;2 Từ đồ thị f � ( x) , trục hoành [ 1;1] lớn diện tích hình Nhận thấy: diện tích hình phẳng giới hạn đồ thị f � ( x) , trục hoành [1; 2] phẳng giới hạn đồ thị f � 1 �� f� ( x )dx � f� ( x )dx � f (1) f (1) f (1) f (2) � f ( 1) f (2) 12 Vậy 1;2 ( x) a ( x 1)( x 1)( x 2) mà f � (0) � a Lại có f � ( x) ( x 1)( x 1)( x 2) x3 x x Vậy f � f x f ( 1) � f ( x) Vậy x x x 2x C f (1) � C 12 Mà f ( x) 25 x x x x � max f x f (1) 1;2 12 Câu 49.Cho hai số phức z1 iz2 z1 , z2 thỏa mãn z1 i 2 z2 i z2 i Tìm giá trị nhỏ 11 A B C 2 Lời giải D Chọn B Giả sử số phức z1 a bi ( a , b ��; i 1) z1 i 2 � a b 1 2 I 2;1 z M biểu diễn số phức Suy thuộc đường tròn tâm , bán kính R 2 M i.z Ta tìm tập hợp điểm biểu diễn số phức : Từ giả thiết z2 i z2 i � i.z2 5i i.z2 7i Gọi điểm M1 � i.z2 5i i.z2 7i Giả sử Suy i.z2 x yi � ( x 1) ( y 5) ( x 1) ( y 7) � x y M thuộc đường thẳng : x y z1 iz2 M 1M Khi đó: Suy ra: z1 iz2 z1 iz2 � M 1M nhỏ nhỏ 1 d I; R 2 Do S có tâm I 1; 2;3 có bán kính r Xét đường thẳng Câu 50 Trong không gian Oxyz,cho mặt cầu �x t � d : �y mt t �� �z m t P , Q hai mặt phẳng chứa d tiếp xúc với S lần � , m tham số thực Giả sử B 1; 0; lượt M , N Khi đoạn MN ngắn tính khoảng cách từ điểm đến đường thẳng d A 5 B 237 C 21 273 D 21 Lờigiải Chọn D H � IH d , d I , d IH Mặt phẳng thiết diện qua tâm I , M , N cắt đường thẳng d IH r r IH 4 x MH MI f x MN MK IH IH x IH Ta có với x IH f� x 2 0, x 2; � x x 4 Ta có , suy hàm số đồng biến r MN � IH Ta có u d 1; m; m 1 , A 1;0; �d , suy Do r uu r � u d , IA� � � d I,d r ud 25m2 20m 17 2m m Xét hàm số f m 25m 20m 17 2m2 2m có bảng biến thiên � �x t � � d : �y t t �� � � z t m � IH � Đường thẳng d có phương trình Suy uuur r � AB, u d � � � 416 273 d B, d r 21 42 ud Khoảng cách ... cách từ A đến mặt phẳng Tính thể tích khối chóp theo a 15 a A 45 15 a B 15 a C 15 a D 45 Câu 44 Từ tôn dạng hình trịn với bán kính R 50 cm , người thợ cần cắt tơn có dạng hình chữ nhật nội... t � 0; 15 Yêu cầu toán � 2 với ۣ �f۳ t t � 0; ۣ y, t 0; y 15 �8 � y � ? ?2021; 2021? ?? � y �� ; 2021? ?? 15 � � Vậy có tất 2021 giá trị nguyên y Kết hợp với... CHI TIẾT Câu Có cách chọn học sinh từ nhóm có học sinh? 2 A B A7 C C7 Lời giải D Chọn C Mỗi cách chọn học sinh từ học sinh tổ hợp chập phần tử Số cách chọn học sinh học sinh là: C7 Câu Cho